Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T02:40:23.291Z Has data issue: false hasContentIssue false

Paleobiology of firmground burrowers and cryptobionts at a Miocene omission surface, Alcoi, SE Spain

Published online by Cambridge University Press:  27 July 2016

Zain Belaústegui
Affiliation:
IRBio (Biodiversity Research Institute) and Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona (UB), Martí Franquès s/n, E-08028 Barcelona, Spain 〈[email protected]〉, 〈[email protected]〉, 〈[email protected]
Allan A. Ekdale
Affiliation:
Department of Geology and Geophysics, University of Utah, 115 South 1460 East, Room 383 FASB, Salt Lake City, Utah 84112-0102, USA 〈[email protected]
Rosa Domènech
Affiliation:
IRBio (Biodiversity Research Institute) and Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona (UB), Martí Franquès s/n, E-08028 Barcelona, Spain 〈[email protected]〉, 〈[email protected]〉, 〈[email protected]
Jordi Martinell
Affiliation:
IRBio (Biodiversity Research Institute) and Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona (UB), Martí Franquès s/n, E-08028 Barcelona, Spain 〈[email protected]〉, 〈[email protected]〉, 〈[email protected]

Abstract

A well-preserved omission surface (sedimentary discontinuity) in an outcrop near Alcoi in southeastern Spain displays trace fossils and body fossils that reflect a dynamic benthic community during the Miocene (Langhian–Tortonian). This outcrop, besides being the type locality of Spongeliomorpha iberica Saporta, 1887, exhibits other abundant trace fossils, such as Glossifungites saxicava Łomnicki, 1886 and Gastrochaenolites ornatus Kelly and Bromley, 1984. These trace fossils are restricted to a single stratigraphic horizon and constitute a typical firmground ichnoassemblage of the Glossifungites ichnofacies. The interiors of some of the Glossifungites and Spongeliomorpha burrows were occupied by encrusting balanomorph barnacles (Actinobalanus dolosus Darwin, 1854). This paper is the first report of cryptic barnacles colonizing the interior of open burrows that constitute a typical firmground ichnocoenose in the fossil record. Detailed ichnologic study demonstrates that the ichnospecies Glossifungites saxicava stands as a valid ichnotaxon and is not a synonym of the ichnogenus Rhizocorallium, as has been suggested by some previous workers.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, J., Belaústegui, Z., Domènech, R., Gibert, J.M. de, and Martinell, J., 2014, Snapshot of a lower Pliocene Dendropoma reef from Sant Onofre (Baix Ebre Basin, Tarragona, NE Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 395, p. 920.CrossRefGoogle Scholar
Anker, A., Jeng, M.S., and Chan, T.Y., 2001, Two unusual species of Alpheidae (Decapoda: Caridea) associated with upogebiid mudshrimps in the mudflats of Taiwan and Vietnam: Journal of Crustacean Biology, v. 21, p. 10491061.CrossRefGoogle Scholar
Astall, C.M., Taylor, A.C., and Atkinson, R.J.A., 1997, Behavioural and physiological implications of a burrow-dwelling lifestyle for two species of upogebiid mud-shrimp (Crustacea: Thalassinidea): Estuarine, Coastal and Shelf Science, v. 44, p. 155168.CrossRefGoogle Scholar
Atkinson, R.J.A., and Taylor, A.C., 1988, Physiological ecology of burrowing decapods: Symposia of the Zoological Society of London, v. 59, p. 201226.Google Scholar
Atkinson, R.J.A., and Taylor, A.C., 2005, Aspects of the physiology, biology and ecology of thalassinidean shrimps in relation to their burrow environment, in Gibson, R.N., Atkinson, R.J.A., and Gordon, J.D.M., eds., Annual Review of Oceanography and Marine Biology, Volume 43: Boca Raton, FL, CRC Press, p. 173210.Google Scholar
Atkinson, R.J.A., Froglia, C., Arneri, E., and Antolini, B., 1997, Observations on the burrows and burrowing behaviour of Squilla mantis (L.) (Crustacea: Stomatopoda): Marine Ecology, v. 18, 337359.CrossRefGoogle Scholar
Barnes, H., 1952, The effect of light on the growth rate of two barnacles Balanus balanoides (L.) and B. crenatus Brug under conditions of total submergence: Oikos, v. 4, p. 104111.CrossRefGoogle Scholar
Belaústegui, Z., Gibert, J.M., de, Nebelsick, J. H., Domènech, R., and Martinell, J., 2013, Clypeasteroid echinoid tests as benthic islands for gastrochaenid bivalve colonization: Evidence from the Middle Miocene of Tarragona, north-east Spain: Palaeontology, v. 56, p. 783796.CrossRefGoogle Scholar
Belaústegui, Z., Ekdale, A.A., Domènech, R., and Martinell, J., 2014, Icnofacies de Glossifungites en el Mioceno de Alcoy (SE España), in Royo-Torres, R., Verdú, F.J., and Alcalá, L., coords., XXX Jornadas de Paleontología de la Sociedad Española de Paleontología, ¡Fundamental!, v. 24, p. 29–32.Google Scholar
Boscà, E., 1917, A propósito de Taonurus ultimus vel Spongiliomorpha iberica Saporta: Boletín de la Real Sociedad Española de Historia Natural, v. 17, p. 263268.Google Scholar
Branch, G.M., and Pringle, A., 1987, The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora: Journal of Experimental Marine Biology and Ecology, v. 107, p. 219235.CrossRefGoogle Scholar
Bromley, R.G., 1975, Trace fossils at omission surfaces, in Frey, R.W., ed., The study of trace fossils: New York, Springer Verlag, p. 399428.CrossRefGoogle Scholar
Bromley, R.G., 1996, Trace Fossils: Biology, Taphonomy and Applications: London, Chapman and Hall, 361 p.CrossRefGoogle Scholar
Bromley, R.G., 2004, A stratigraphy of marine bioerosion, in McIlroy, D., ed., The Application of Icnology to Palaeoenvironmental and Stratigraphic Analysis: London, The Geological Society, p. 455479.Google Scholar
Bromley, R.G., and Frey, R.W., 1974, Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha : Bulletin of the Geological Society of Denmark, v. 23, p. 311335.Google Scholar
Bruguière, M., 1789, Encyclopédie méthodique: Histoire naturelle des Vers, v. 1, p. 158173.Google Scholar
Buatois, L., and Mángano, M.G., 2011, Ichnology. Organism-Substrate Interactions in Space and Time: New York, Cambridge University Press, 358 p.CrossRefGoogle Scholar
Calzada, S., 1981, Revision del icno Spongeliomorpha iberica Saporta, 1887 (Mioceno de Alcoy, España): Boletín de la Real Sociedad Española de Historia Natural (Geologia), v. 79, p. 189195.Google Scholar
Carmona, N.B., Mángano, M.G., Buatois, L.A., and Ponce, J.J., 2007, Bivalve trace fossils in an early Miocene discontinuity surface in Patagonia, Argentina: Burrowing behavior and implications for ichnotaxonomy at the firmground-hardground divide: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 255, p. 329341.CrossRefGoogle Scholar
Cater, J.M.L., 1987, Sedimentary evidence of the Neogene evolution of SE Spain: Journal of the Geological Society, London, v. 144, p. 915932.CrossRefGoogle Scholar
Crisp, D.J., Southward, A.J., and Southward, E.C., 1981, On the distribution of the intertidal barnacles Chthamalus stellatus, Chthamalus montagui and Euraphia depressa : Journal of the Marine Biological Association of the UK, v. 61, p. 359380.CrossRefGoogle Scholar
Darwin, C., 1854, A Monograph on the Subclass Cirripedia, with Figures of All the Species: London, Ray Society Publications, 684 p.Google Scholar
Davadie, C., 1963, Étude des balanes d’Europe et d’Afrique. Systèmatique et structure des balanes fossiles d'Europe et d'Afrique: Paris, Éditions du Centre National de la Recherche Scientifique 15, 146 p.Google Scholar
d'Orbigny, A., 1826, Tableau méthodique de la classe des Céphalopodes: Annales des Sciences Naturelles, Paris, v. 7, p. 245308.Google Scholar
d'Orbigny, A., 1846, Foraminifères fossiles du Bassin Tertiare de Vienne (Austriche): Paris, Gide et comp, 312 p.Google Scholar
Dworschak, P.C., 1981, The pumping rates of the burrowing shrimp Upogebia pusilla (Petagna) (Decapoda : Thalassinidea): Journal of Experimental Marine Biology and Ecology, v. 52, p. 2535.CrossRefGoogle Scholar
Dworschak, P.C., 2001, The burrows of Callianassa thyrrena (Petagna 1792) (Decapoda: Thalassinidea): Marine Ecology, v. 22, p. 155166.CrossRefGoogle Scholar
Dworschak, P.C., Anker, A., and Abed-Navandi, D., 2000, A new genus and three new species of alpheids (Decapoda: Caridea) associated with thalassinids: Annalen des Naturhistorischen Museums in Wien, v. 102B, p. 301320.Google Scholar
Dworschak, P.C., Koller, H., and Abed-Navandi, D., 2006, Burrow structure, burrowing and feeding behaviour of Corallianassa longiventris and Pestarella tyrrhena (Crustacea, Thalassinidea, Callianassidae): Marine Biology, v. 148, p. 13691382.CrossRefGoogle Scholar
Ehrenberg, K., 1944, Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Kresbe: Paläontologische Zeitschrift, v. 23, p. 345359.CrossRefGoogle Scholar
Ekdale, A.A., and Gibert, J.M. de, 2010, Paleoethologic significance of bioglyphs: Fingerprints of the subterraneans: Palaios, v. 25, p. 540545.CrossRefGoogle Scholar
Ekdale, A.A., Bromley, R.G., and Pemberton, S.G., 1984, Ichnology. The use of trace fossils in Sedimentology and Stratigraphy: Tulsa, Society of Economic Paleontologists and Mineralogists, 317 p.CrossRefGoogle Scholar
Forster, S., and Graf, G., 1995, Impact of irrigation on oxygen flux into the sediment: Intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega : Marine Biology, v. 123, p. 335346.CrossRefGoogle Scholar
Frey, R.W., 1973, Concepts in the study of biogenic sedimentary structures: Journal of Sedimentary Petrology, v. 43, p. 619.Google Scholar
Frey, R.W., and Howard, J.D., 1981, Conichnus and Schaubcylindrichnus: Redefined trace fossils from the Upper Cretaceous of the Western Interior: Journal of Paleontology, v. 55, p. 800804.Google Scholar
Fürsich, F.T., 1973, A revision of the trace fossils Spongeliomorpha, Ophiomorpha and Thalassinoides : Neues Jahrbuch für Geologie und Paläontologie: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. Monatshefte, v. 12, p. 719735.Google Scholar
Fürsich, F.T., 1974a, Corallian (Upper Jurassic) trace fossils from England and Normandy: Stuttgarter Beiträge zur Naturkunde B, v. 13, p. 152.Google Scholar
Fürsich, F.T., 1974b, Ichnogenus Rhizocorallium : Paläontologische Zeitschrift, v. 48, p. 1628.CrossRefGoogle Scholar
Fürsich, F.T., and Palmer, T.J., 1975, Open crustacean burrows associated with hardgrounds in the Jurassic of the Cotswolds, England: Proceedings of the Geologists’ Association, v. 86, p. 171181.CrossRefGoogle Scholar
Geel, T., Roep, Th.B., Kate, W., and Smit, J., 1992, Early-middle Miocene stratigraphic turning points in the Alicante region (SE Spain): Reflections of Western Mediterranean plate-tectonic reorganizations: Sedimentary Geology, v. 75, p. 223239.CrossRefGoogle Scholar
Ghandour, I.M., Al-Washmi, H.A., and Haredy, R.A., 2013, Gravel-sized mud clasts on an arid microtidal sandy beach: Example from the northeastern Red Sea, South Al-Wajh, Saudi Arabia: Journal of Coastal Research, v. 29, p. 110117.Google Scholar
Gibert, J.M. de, 2011, Las trazas fósiles del Mioceno al oeste de Alcoy: La localidad tipo de Spongeliomorpha iberica : ISURUS Revista de divulgación paleontológica y de las ciencias asociadas, v. 4, p. 2227.Google Scholar
Gibert, J.M. de, and Ekdale, A.A., 2010, Paleobiology of the crustacean trace fossil Spongeliomorpha iberica in the Miocene of southeastern Spain: Acta Palaeontologica Polonica, v. 55, p. 733740.CrossRefGoogle Scholar
Gibert, J.M., de, Netto, R.G., Tognoli, F.M.W., and Grangeiro, M.E., 2006, Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 230, p. 7084.CrossRefGoogle Scholar
Gingras, M.K., Pemberton, S.G., and Saunders, T., 2001, Bathymetry, sediment texture, and substrate cohesiveness: Their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 169, p. 121.CrossRefGoogle Scholar
Goldring, R., and Kaźmierczak, J., 1974, Ecological succession in intraformational hardground formation: Palaeontology, v. 17, p. 949962.Google Scholar
Golubic, S., Perkins, R.D., and Lukas, K.J., 1975, Boring microorganisms and microborings in carbonate substrates, in Frey, R.W., ed., The STUdy of Trace Fossils. A Synthesis of Principles, Problems and Procedures in Ichnology: New York, Springer-Verlag, p. 229259.CrossRefGoogle Scholar
Golubic, S., Friedmann, I., and Schneider, J., 1981, The lithobiontic ecological niche, with special reference to microorganisms: Journal of Sedimentary Petrology, v. 51, p. 475478.Google Scholar
Guy-Haim, T., Rilov, G., and Achituv, Y., 2015, Different settlement strategies explain intertidal zonation of barnacles in the Eastern Mediterranean: Journal of Experimental Marine Biology and Ecology, v. 463, p. 125134.CrossRefGoogle Scholar
Häntzschel, W., 1975, Trace fossils and problematica, in Teichert, C., ed., Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement I: The Geological Society of America and the University of Kansas, Lawrence, p. W1W269.Google Scholar
Hofker, J., 1965, Foraminifera from the Cretaceous of South Limburg, Netherlands: LXXVII. Arenaceous Foraminifera attached on the walls of the holes in the hard grounds of the Lower Md in the quarry Curfs: Coscinophragma cribosum (Reuss); Placopsilina cenomana d’Orbigny; Bdelloidina vincentownensis Hofker: Natuurhistorisch Maandblad, v. 54, p. 2932.Google Scholar
Hong, J., Choh, S., and Lee, D., 2014, Tales from the crypt: Early adaptation of cryptobiontic sessile metazoans: Palaios, v. 29, p. 95100.CrossRefGoogle Scholar
Kelly, S.R.A., and Bromley, R.G., 1984, Ichnological nomenclature of clavate borings: Palaeontology, v. 27, p. 793807.Google Scholar
Kennedy, W.J., 1967, Burrows and surface traces from the Lower Chalk of Southern England: Bulletin of the British Museum (Natural History), Geology, v. 15, p. 125167.Google Scholar
Knaust, D., 2013, The ichnogenus Rhizocorallium: Classification, trace makers, palaeoenvironments and evolution: Earth-Science Reviews, v. 126, p. 147.CrossRefGoogle Scholar
Kneer, D., Asmus, H., and Vonk, J.A., 2008, Seagrass as the main food source of Neaxius acanthus (Thalassinidea: Strahlaxiidae), its burrow associates, and of Corallianassa coutierei (Thalassinidea: Callianassidae): Estuarine, Coastal and Shelf Science, v. 79, p. 620630.CrossRefGoogle Scholar
Knight, J., 2005, Processes of soft-sediment clast formation in the intertidal zone: Sedimentary Geology, v. 181, p. 207214.CrossRefGoogle Scholar
Kobluk, D.R., 1988a, Pre-Cenozoic fossil record of cryptobionts and their presence in early reefs and mounds: Palaios, v. 3, p. 243250.CrossRefGoogle Scholar
Kobluk, D.R., 1988b, Cryptic faunas in reefs: Ecology and geologic importance: Palaios, v. 3, p. 379390.CrossRefGoogle Scholar
Kobluk, D.R., and Lysenko, M.A., 1993, Hurricane effects on shallow-water cryptic reef mollusks, Fiji Islands: Journal of Paleontology, v. 67, p. 798816.CrossRefGoogle Scholar
Lewis, D.W., and Ekdale, A.A., 1992, Composite ichnofabric of a mid-Tertiary unconformity on a pelagic limestone: Palaios, v. 7, p. 222235.CrossRefGoogle Scholar
Leymerie, M.A., 1842, Suite de mémoire sur le terrain Crétacé du département de l’Aube: Memoire de la Société Géologique de France, v. 5, p. 134.Google Scholar
Linkin, Y., and Safriel, U., 1971, Intertidal zonation on rocky shores at Mikhmoret (Mediterranean, Israel): Journal of Ecology, v. 59, p. 130.CrossRefGoogle Scholar
Linnaeus, C., 1758, Systema Naturae, 10th ed., v. I: Stockholm, Laurentius Salvius, 823 p.Google Scholar
Linnaeus, C., 1767, Mantissa Plantarum. Generum Editionis VI et Specierum Editionis II: Stockholm, Laurentius Salvius, 142 p.Google Scholar
Liu, H.T.H., Kneer, D., Asmus, H., and Ahnelt, H., 2008, The feeding habits of Austrolethops wardi, a gobiid fish inhabiting burrows of the thalassinidean shrimp Neaxius acanthus : Estuarine, Coastal and Shelf Science, v. 79, p. 764767.Google Scholar
Łomnicki, A.M., 1886, Słodkowodny utwór trzeciorzędny na Podolu galicyjskiém [Tertiary fresh-water deposit in the Galician Podolia]: Akademii Umiejętności w Krakowie, Sprawozdanie Komisyi Fizyjograficznej, v. 20, p. 48119.Google Scholar
Lukeneder, A., and Harzhauser, M., 2003, Olcostephanus guebhardi as cryptic habitat for an Early Cretaceous coelobite community (Valanginian, Northern Calcareous Alps, Austria): Cretaceous Research, v. 24, p. 477485.CrossRefGoogle Scholar
Lundgren, B., 1891, Studier öfver fossilförande lösa block: Geologiska Föreningens i Stockholm Förhandlingar, v. 13, p. 111121.CrossRefGoogle Scholar
Männil, R., 1966. O vertikalnykh norkakh zaryvaniya v Ordovikskikh izvestnyakakh Pribaltiki, in Hecker, R.F., ed., Organizm i sreda v geologischeskom proshlom: Akademiya Nauk SSSR. Paleontologicheskij Institut, p. 200207.Google Scholar
Martínez del Olmo, W., 1999, Diapirismo de sales triásicas: Consecuencias estructurales y sedimentarias en el Prebético oriental (Cordillera Bética, SE España): Libro Homenaje a José Ramírez del Pozo. Asociación de Geólogos y Geofísicos Españoles del Petróleo, p. 175187.Google Scholar
Menesini, E., 1964, Caratteri morfologici e struttura microscópica di alcune specie di Balani neogenici e quaternari: Palaeontographia Italica, v. 59, 129 p.Google Scholar
Morton, J.E., and Challis, D.A., 1969, The biomorphology of Solomon Islands shores with a discussion of zoning patterns and ecological terminology: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, v. 255, p. 459516.Google Scholar
Nara, M., Akiyama, H., and Itani, G., 2008, Macrosymbiotic association of the myid bivalve Cryptomya with thalassinidean shrimps: Examples from modern and Pleistocene tidal flats of Japan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 261, p. 100104.CrossRefGoogle Scholar
Newman, W.A., Zullo, V., and Withers, T.H., 1969, Cirripedia, in Moore, R.C., ed., Treatise in Invertebrate Paleontology, Part R, Arthropoda 4, Volume 1: The Geological Society of America and the University of Kansas, Lawrence, p. R206R295.Google Scholar
Ott d’Estevou, P., Montenat, C., Ladure, F., and Pierson D'autrey, L., 1988, Evolution tectono-sédimetaire du domaine prébétique oriental (Espagne) au Miocene: Comptes Rendus de l'Académie des Sciences - Series II, v. 307, p. 789796.Google Scholar
Palmer, T.J., and Fürsich, F.T., 1974, The ecology of a Middle Jurassic hardground and crevice fauna: Palaeontology, v. 17, p. 507524.Google Scholar
Pemberton, S.G., and Frey, R.W., 1985, The Glossifungites ichnofacies: Modern examples from the Georgia coast, USA, in Curran, H.A., ed., Biogenic Structures: Their Use in Interpreting Depositional Environments: Society for Sedimentary Geology Special Publication, v. 35, p. 237259.CrossRefGoogle Scholar
Pemberton, S.G., MacEachern, J.A., and Saunders, T., 2004, Stratigraphic applications of substrate-specific ichnofacies: Delineating discontinuities in the fossil record, in McIlroy, D., ed., The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society Special Publication, v. 228, p. 2962.Google Scholar
Rindsberg, A.K., 2012, Ichnotaxonomy: Finding patterns in a welter of information, in Knaust, D., and Bromley, R.G., eds., Trace Fossils as Indicators of Sedimentary Environments, Volume 64, Developments in Sedimentology: Amsterdam, Elsevier, p. 4578.CrossRefGoogle Scholar
Rosso, A., Sanfilippo, R., Ruggieri, R., Maniscalco, R., and Vertino, A., 2015, Exceptional record of submarine cave communities from the Pleistocene of Sicily (Italy): Lethaia, v. 48, p. 133144.CrossRefGoogle Scholar
Ruig, M.J. de, 1992, Tectono-Sedimentary Evolution of the Prebetic Fold Belt of Alicante (SE Spain), Amsterdam, Vrije University, 207 p.Google Scholar
Sanz de Galdeano, C., and Vera, J.A., 1992, Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain: Basin Research, v. 4, p. 2136.CrossRefGoogle Scholar
Saporta, M. de, 1887, Nouveaux documents relatifs aux organismes problematiques des anciens mers: Bulletin de la Sociète Géologique du France, v. 15, p. 286302.Google Scholar
Savazzi, E, 1999, Boring, nestling and tube-dwelling bivalves, in Savazzi , E., ed., Functional Morphology of the Invertebrate Skeleton: Chichester, John Wiley & Sons, p. 205237.Google Scholar
Schlagintweit, F., and Bover-Arnal, T., 2012, The morphological adaptation of Lithocodium aggregatum Elliott (calcareous green alga) to cryptic microhabitats (Lower Aptian, Spain): An example of phenotypic plasticity: Facies, v. 58, p. 3755.CrossRefGoogle Scholar
Schlirf, M., 2000, Upper Jurassic trace fossils from the Boulonnais (northern France): Geologica et Paleontologica, v. 34, p. 145213.Google Scholar
Schlirf, M., 2011, A new classification concept for U-shaped spreite trace fossils: Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, v. 260, p. 3354.CrossRefGoogle Scholar
Seilacher, A., 1964, Sedimentological classification and nomenclature of trace fossils: Sedimentology, v. 3, p. 253256.Google Scholar
Seilacher, A., 1967, Bathymetry of trace fossils: Marine Geology, v. 5, p. 413428.CrossRefGoogle Scholar
Seilacher, A., 2007, Trace Fossil Analysis: New York, Springer-Verlag, 226 p.Google Scholar
Shirayama, Y., and Horikoshi, M., 1982, A new method of classifying the growth form of corals and its application to a field survey of coral-associated animals in Kabira Cove, Ishigaki Island: Journal of the Oceanographical Society of Japan, v. 38, p. 193207.CrossRefGoogle Scholar
Stamhuis, E.J., and Videler, J.J., 1998a, Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: Thalassinidea). I. Morphology and motion of the pleopods, uropods and telson: The Journal of Experimental Biology, v. 201, p. 21512158.CrossRefGoogle ScholarPubMed
Stamhuis, E.J., and Videler, J.J., 1998b, Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: Thalassinidea). II. The flow in the vicinity of the shrimp and the energetic advantages of a laminar non-pulsating ventilation current: The Journal of Experimental Biology, v. 201, p. 21592170.CrossRefGoogle ScholarPubMed
Stamhuis, E.J., and Videler, J.J., 1998c, Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: Thalassinidea). III. Hydrodynamic modelling and the energetics of pleopod pumping: The Journal of Experimental Biology, v. 201, p. 21712181.CrossRefGoogle ScholarPubMed
Taylor, P.D., and Wilson, M.A., 2003, Palaeoecology and evolution of marine hard substrate communities: Earth-Science Reviews, v. 62, p. 1103.CrossRefGoogle Scholar
Uchman, A., and Wetzel, A., 2012, Deep-sea fans, in Knaust, D., and Bromley, R.G., eds., Trace Fossils as Indicators of Sedimentary Environments, Volume 64, Developments in Sedimentology: Amsterdam, Elsevier, p. 643671.CrossRefGoogle Scholar
Uchman, A., Bubniak, I., and Bubniak, A., 2000, The Glossifungites ichnofacies in the area of its nomenclatural archetype, Iviv, Ukraine: Ichnos, v. 7, p. 183193.CrossRefGoogle Scholar
Uchman, A., Mikuláš, R., and Houša, V., 2003, The trace fossil Chondrites in uppermost Jurassic-Lower Cretaceous deep cavity fills from the western Carpathians (Czech Republic): Geologica Carpathica, v. 54, p. 181187.Google Scholar
Voigt, E., 1987, Thalassinoid burrows in the Maastrichtian Chalk Tuff near Maastricht (The Netherlands) as a fossil hardground microcavern biotope of Cretaceous bryozoans, in Ross, J.R.P., ed., Bryozoa: Present and Past: Bellingham, Western Washington University, p. 293300.Google Scholar
Voigt, E., 1988, Wachstums-und Knospungsstrategie von Grammothoa filifera Voigt and Hilmer (Bryozoa, Cheilostomata, Ob. Kreide): Paläontologische Zeitschrift, v. 62, p. 193203.CrossRefGoogle Scholar
Weimer, R.J., and Hoyt, J.H., 1964, Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments: Journal of Paleontology, v. 38, p. 761767.Google Scholar
Wilson, M.A., and Taylor, P.D., 2001, Palaeoecology of hard substrate faunas from the Cretaceous Qahlah Formation of the Oman Mountains: Palaeontology, v. 44, p. 2141.CrossRefGoogle Scholar
Zenker, J.C., 1836, Historisch-Topographisches Taschenbuch von Jena und Seiner Umgebung: Jena, Friedrich Frommann, 338 p.Google Scholar
Zuschin, M., and Mayrhofer, S., 2009, Brachiopods from cryptic coral reef habitats in the northern Red Sea: Facies, v. 55, p. 335344.Google Scholar