Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T12:40:45.091Z Has data issue: false hasContentIssue false

Paleobiology and Paleoecology of Palaeoaplysina and Eopalaeoaplysina New Genus in Arctic Canada

Published online by Cambridge University Press:  15 October 2015

Kaylee D. Anderson
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada ; and
Benoit Beauchamp
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada ; and

Abstract

Palaeoaplysina is an enigmatic platy macrofossil with a cellular skeleton and internal canal system common to upper Carboniferous–lower Permian reefs of the northern hemisphere. Its rapid flourishing from the Moscovian and subsequent extinction near the end of the Sakmarian, as well as its unique combination of physical features, are poorly understood. In addition to Palaeoaplysina reefs forming major petroleum exploration targets in Russia, Palaeoaplysina is abundant and well preserved in the Sverdrup Basin in the Canadian Arctic Archipelago. A new genus of Palaeoaplysinaceae, Eopalaeoaplysina n. gen., is also widespread in the Sverdrup Basin and identified based on a simple morphology with broad canals distributed in roughly even rows. The distribution of paleoaplysinids in strata from the Moscovian to the Sakmarian in the Sverdrup Basin reveals Eopalaeoaplysina and Palaeoaplysina represent two distinct reef-building forms with an increase in complexity over time. The aragonitic composition of Palaeoaplysina, in addition to its distribution within the photic zone and differentiated cellular skeleton, suggests paleoaplysinids were ancestral red algae. Palaeoaplysina occurs in both low-energy back-reef and higher-energy reef front facies. Preserved thin edges of Palaeoaplysina plates indicate it was encrusting, at least in low-energy conditions. The exclusion of Palaeoaplysina from the late Paleozoic tropics and the southern hemisphere, its rapid appearance and proliferation, and its eventual extinction may point towards an evolutionary niche optimized for warm-water conditions at unusually high latitudes along the western margin of Pangea.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V. and Paracer, S. 1986. Symbiosis: An Introduction to Biological Associations. University Press of New England, London. 212p.Google Scholar
Balkwill, H. R. 1978. Evolution of Sverdrup Basin, Arctic Canada. AAPG Bulletin, 62:10041028.Google Scholar
Bamber, E. W. and Macqueen, R. W. 1979. Upper Carboniferous and Permian stratigraphy of the Monkman Pass and Southern Pine Pass Areas, Northeastern British Columbia. Geological Survey of Canada Bulletin, 301:126.Google Scholar
Beauchamp, B. 1992. Carboniferous and Permian reefs of Sverdrup Basin Canadian Arctic: An aid to Barentz Sea exploration, p. 217241. In Vorren, T. O., Bergsager, E., Dahl-Stammes, O. A., Holter, E., Johansen, B., Lie, E. and Lund, T. B. (eds.), Arctic Geology and Petroleum Potential 2. Norwegian Petroleum Society Special Publication.Google Scholar
Beauchamp, B. and Baud, A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184:3763.Google Scholar
Beauchamp, B., Davis, G. R., and Nassichuk, W. W. 1989 a. Upper Carboniferous to lower Permian Palaeoaplysina-phylloid algal build-ups, Canadian arctic archipelago, p. 590599. In Geldsetzer, H. H. J., Jamesm, N. P. and Tebbutt, G.E. (eds.), Reefs. Canada and Adjacent Areas. Canadian Society of Petroleum Geologists Memoir 13.Google Scholar
Beauchamp, B. and Desrochers, A. 1997. Permian warm- to very cold-water carbonates and cherts in northwest Pangea, p. 327347. In James, N. P. and Clarke, J. A. D. (eds.), Cool-Water Carbonates. SEPM Special Publication 56, Tulsa, Oklahoma.10.2110/pec.97.56.0327Google Scholar
Beauchamp, B., Harrison, J. C., and Henderson, C. M. 1989 b. Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic Archipelago. Part 1: Time frame and tectonic evolution, p. 105113. In Current Research, Part G, Geological Survey of Canada Paper 89–1G.Google Scholar
Beauchamp, B. and Henderson, C. M. 1994. The Lower Permian Raanes, Great Bear Cape and Trapper's Cove formations, Sverdrup Basin. Bulletin of Canadian Petroleum Geology, 42:562597.Google Scholar
Beauchamp, B. and Olchowy, B. 2003. Early Permian build-ups (Tolkien Reefs) associated with subaqueous evaporites, Canadian Arctic: a record of syntectonic to post-tectonic reciprocal uplift and subsidence, p. 133153. In Ahr, W. M., Harris, P. M., Morgan, W. A., and Somerville, I. D. (eds.), Permo-Carboniferous Carbonate Platforms and Reefs. SEPM Special Publication 78, Tulsa, Oklahoma.Google Scholar
Beauchamp, B., Thériault, P., Henderson, C. M., Pinard, S., and Lin, R. 1998. Chapter 6: Carboniferous to Triassic formations of the Sverdrup Basin, p. 195233. In Mayr, U., De Freitas, T., Beauchamp, B., and Eisbacher, G. (eds.), The Geology of Devon Island North of 76, Canadian Arctic Archipelago, Geological survey of Canada, Bulletin 526.Google Scholar
Bensing, J. P., James, N. P., and Beauchamp, B. 2008. Carbonate deposition during a time of mid-latitude ocean cooling: Early Permian subtropical sedimentation in the Sverdrup Basin, Arctic Canada. Journal of Sedimentary Research, 78:215.10.2110/jsr.2008.004Google Scholar
Breuninger, R. H. 1976. Palaeoaplysina (Hydrozoan?) Carbonate build-ups from upper Paleozoic of Idaho. The American Association of Petroleum Geologists Bulletin, 60:584607.Google Scholar
Breuninger, R. H., Canter, K. L., and Isaacson, P. E. 1989. Pennsylvanian–Permian Palaeoaplysina and algal buildups, Snaky Canyon Formation, east-central Idaho, U.S.A., p. 631637. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs. Canada and Adjacent Areas. Canadian Society of Petroleum Geologists Memoir 13.Google Scholar
Chernykh, V. V. 2006. Lower Permian Conodonts of the Urals. Institute of Geology and Geochemistry, Uralian Branch of the Russian Academy of Sciences Ekaterinburg, Russia. (In Russian).Google Scholar
Chuvashov, B. I. 1973. Morphology, ecology and systematic position of the genus Palaeoaplysina . Paleontologicheskii Zhurnal 4:38. (In Russian) Google Scholar
Chuvashov, B. I. 1983. Permian reefs of the Urals. Facies, 8:191212.10.1007/BF02536742Google Scholar
Chuvashov, B. I., Luchinina, V. A., Shuysky, V. P., Shaikin, I. M., Berchenko, O. I., Ishchenko, A. A., Saltovskaya, V.D., and Shirshova, D. I. 1987. Fossil calcareous algae, morphology, systematics, methods of study. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii i Geofiziki, 674:5224. (In Russian) Google Scholar
Cozar, P. and Vachard, D. 2003. Neoprincipia nov. gen., a new Mississippian red alga, and remarks on the Archaeolithophyllaceae (Rhodophyta). Geobios, 36:505517.10.1016/S0016-6995(03)00060-3Google Scholar
Davies, G. R. 1971. A Permian Hydrozoan Mound, Yukon Territory. Canadian Journal of Earth Sciences, 8:973988.10.1139/e71-087Google Scholar
Davies, G. R. 1989. Lower Permian palaeoaplysinid mound, northern Yukon, Canada, p. 638642. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs. Canada and Adjacent Areas, Canadian Society of Petroleum Geologists Memoir 13.Google Scholar
Davies, G. R. and Nassichuk, W. W. 1973. The Hydrozoan? Palaeoaplysina from the upper Paleozoic of Ellesmere Island, Arctic Canada. Journal of Paleontology, 47:251265.Google Scholar
Davies, G. R. and Nassichuk, W. W. 1990. Submarine cements and fabrics in Carboniferous to Lower Permian, reefal, shelf margin and slope carbonates, Northwestern Ellesmere Island, Canadian Arctic Archipelego. Geological Survey of Canada Bulletin, 399:177.Google Scholar
Embry, A. and Beauchamp, B. 2008. Sverdrup Basin, p. 451471. In Miall, A. D. Hsü, K. J. (eds.), Sedimentary Basins of the World, Vol. 5, The Sedimentary Basins of the United States and Canada. Elsevier, The Netherlands.10.1016/S1874-5997(08)00013-0Google Scholar
Fan, J., Rigby, J. K., and Wei, Z. 1991. “Hydrozoa” from middle and upper Permian Reefs of South. Journal of Paleontology, 65:4568.Google Scholar
Fielding, C. R., Frank, T. D., Isbell, J. L., Henry, L. C., and Domack, E. W. 2010. Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter-regional comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology, 298:7090.10.1016/j.palaeo.2010.05.023Google Scholar
Finks, R. M. and Rigby, J. K. 2004. Hypercalcified sponges, p. 585764. In R. L. Kaesler, Porifera 3. Part E of Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Flügel, E. 1981. Lower Permian Tubiphytes/Archaeolithoporella buildups in the southern Alps (Austria and Italy), p. 143160. In Toomey, D. F. (ed.), European Fossil Reef Models. SEPM Special Publication 30, Tulsa, Oklahoma.Google Scholar
Flügel, E. 2004. Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin.Google Scholar
Forsythe, G. T. W. 2003. A new synthesis of Permo–Carboniferous phylloid algal reef ecology, p. 171188. In Ahr, W. M., Harris, P. M., Morgan, W. A., and Somerville, I. D. (eds.), Permo–Carboniferous Carbonate Platforms and Reefs. SEPM Special Publication 78, Tulsa, Oklahoma.Google Scholar
Golonka, J. and Ford, D. 2000. Pangean (late Carboniferous–Middle Jurassic) paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 161:134.Google Scholar
Harrison, J. C. 1995. Melville Island's salt based fold belt (Arctic Canada). Geological Survey of Canada Bulletin, 472:1331.Google Scholar
Heckel, P. H. 2002. Overview of Pennsylvanian cyclothems in midcontinent North America and brief summary of those elsewhere in the world, p. 7998. In Hills, L. V. (ed.), Carboniferous and Permian of the World. Canadian Society of Petroleum Geologists Memoir 19.Google Scholar
Henderson, C. M. 1989. Conodont paleontology and biostratigraphy of the upper Carboniferous to lower Permian Canyon Fiord, Belcher Channel, Nansen, an unnamed, and Van Hauen formations, Canadian Arctic Archipelago. Unpublished Ph.D. thesis, University of Calgary, Canada, 287 p.Google Scholar
Henderson, C. M., Davydov, V. I., and Wardlaw, B. R. 2012. The Permian Period, p. 653680. In Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G. (eds.), The Geologic Time Scale, 2012. Elsevier, Amsterdam.Google Scholar
Henderson, C. M., Pinard, S., and Beauchamp, B. 1995. Biostratigraphic and sequence stratigraphic relationships of upper Carboniferous conodont and foraminifer distribution, Canadian Arctic Archipelago. Bulletin of Canadian Petroleum Geology, 43:226246.Google Scholar
Henry, L. C., Isbell, J. L., Limarino, C. O., McHenry, L. J., and Fraiser, M. L. 2010. Mid-Carboniferous deglaciation of the Protoprecordillera, Argentina, recorded in the Agua de Jagüel paleovalley. Palaeogeography, Palaeoclimatology, Palaeoecology, 298:112129.10.1016/j.palaeo.2010.03.051Google Scholar
Hill, D. and Wells, J. W. 1956. Hydroida and Spongiomorphida, p. F8189. In Moore, R. C., (ed.), Coelenterata. Part F. Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Igawa, T. 2003. Microbial contribution to deposition of upper Carboniferous and lower Permian seamount-top carbonates, Akiyoshi, Japan. Facies, 48:6178.Google Scholar
Ilkhovskii, R. A. 1973. Late Paleozoic Hydroidea of the Russian platform. Paleontological Journal 4:447455.Google Scholar
James, N. P. 1997. The cool-water carbonate depositional realm, p. 120. In James, N. P. and Clarke, J. A. D. (eds.), Cool-Water Carbonates. SEPM Special Publication 56, Tulsa, Oklahoma.Google Scholar
James, N. P., Wray, J. L., and Ginburg, R. N. 1988. Calcification of encrusting aragonitic algae (Peyssonneliaceae): implications for the origin of Late Paleozoic reefs and cements. Journal of Sedimentary Petrology, 58:291303.Google Scholar
Johnson, J. H. 1956. Archaeolithophyllum, a new genus of Paleozoic coralline algae. Journal of Paleontology, 30:5355.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 1999. Evaluation of a comprehensive database on Phanerozoic Reefs. AAPG Bulletin, 83:15521587.Google Scholar
Krotov, P. 1888. Geologicheskiya izsledovaniya na Zapodnom sklon Solikamskovo i Cherdynskagos Urala: Trudy Geologicheskago Komiteta, 6:431434.Google Scholar
Lonøy, A. 1988. Environmental setting and diagenesis of lower Permian palaeoaplysinid build-ups and associated sediments from Bjornaya: implications for exploration of the Barents Sea. Journal of Petroleum Geology, 11:141156.Google Scholar
Macqueen, R. W. and Bamber, E. W. 1977. Occurrence of Palaeoaplysina (Hydrozoan?) in upper Carboniferous (lower Moscovian) carbonate rocks, Northeastern British Columbia. Geological Survey of Canada Paper, 77-1A:145146.Google Scholar
Mamet, B., Nassichuk, W. W., and Roux, A. 1987. Algues et stratigraphie du Paléozoique supérieur de l'Arctique canadien: Geological Survey of Canada, Bulletin, 242:1143.Google Scholar
Montañez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M. C. 2007. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science, 315:8791.Google Scholar
Morin, J., Desrochers, A., and Beauchamp, B. 1994. Facies analysis of lower Permian platform carbonates, Sverdrup Basin, Canadian Arctic Archipelago. Facies, 31:105130.Google Scholar
Moshier, S. O. and Kirkland, B. L. 1993. Identification and diagenesis of a phylloid alga: Archaeolithophyllum from the Pennsylvanian Providence Limestones, western Kentucky. Journal of Sedimentary Petrology, 63:10321041.Google Scholar
Nakazawa, T. and Ueno, K. 2009. Gzhelian–Asselian Palaeoaplysina reef in atoll carbonates of the Akiyoshi Terrane, SW Japan: a peculiar community in the Panthalassan reef evolution. Acta Geoscientica Sinica, 30 (suppl. 1):4447.Google Scholar
Nakazawa, T., Ueno, K., Kawahata, H., and Fujikawa, M. 2011. Gzhelian–Asselian Palaeoaplysina—microencruster reef community in the Taishaku and Akiyoshi limestones, SW Japan: implications for late Paleozoic reef evolution on mid-Panthalassan atolls. Palaeogeography, Palaeoclimatology, Palaeoecology, 310:378392.Google Scholar
Nassichuk, W. W. and Davies, G. R. 1980. Stratigraphy and sedimentation of the Otto Fiord Formation. Geological Survey of Canada Bulletin, 286:187.Google Scholar
Nassichuk, W. W. and Davies, G. R. 1992. Upper Paleozoic reefs and their biota in the Canadian Arctic Archipelago. Oklahoma Geological Survey Circular, 94:171181.Google Scholar
Pinard, S. and Mamet, B. 1998. Taxonomie des petits foraminifères du Carbonifère supérieur-Permien inférieur du basin de Sverdrup, Arctique canadien. Palaeontographica Canadiana, 15:1167.Google Scholar
Racz, L. 1964. Carboniferous calcareous algae and their associations in the San Emiliano and Lois-Ciguera formations (Prov. León, NW Spain). Leidse Geologische Mededelingen, 31 Leiden, 112 p.Google Scholar
Rafaelsen, B., Elvebakk, G., Andreassen, K., Stemmerik, L., Colpaert, A., and Samuelsberg, T. 2008. From detached to attached carbonate buildup complexes—3D seismic data from the upper Paleozoic, Finnmark Platform, southwestern Barents Sea. Sedimentary Geology, 206:1732.Google Scholar
Reid, C. M, James, N. P., Beauchamp, B., and Kyser, T. K. 2007. Faunal turnover and changing oceanography: late Paleozoic warm-to cool water carbonates, Sverdrup Basin, Canadian Arctic Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology, 249:128159.Google Scholar
Rigby, J. K., Fan, J., and Wei, Z. 1989. Inozoan calcareous Porifera from the Permian reefs in South China. Journal of Paleontology 63:778800.10.1017/S0022336000036489Google Scholar
Ritter, S. M. and Morris, T. H. 1997. Oldest and lowest latitudinal occurrence of Palaeoaplysina: Middle Pennsylvanian Ely Limestone, Burbank Hills, Utah. PALAIOS, 12:397401.10.2307/3515339Google Scholar
Ruprecht, F. 1851. Über das System der Rhodophyceae. Buchdr. der Kaiserlichen Akademie der Wissenschaften, St. Petersburg.Google Scholar
Ryabinin, V. N. 1955. On Carboniferous and Permian palaeoaplysinids of Urals and Timan. Trudy Vses. Neft. I.-I. Geologorazv. In-ta, nov. ser., 90:331337. (In Russian) Google Scholar
Scholle, P. A. and Ulmer-Scholle, D. S. 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. American Association of Petroleum Geologists Memoir 77, Tulsa, Oklahoma.Google Scholar
Skaug, M., Dons, C. E., Lauritzen, Ø., and Worsley, D. 1982. Lower Permian palaeoaplysinid bioherms and associated sediments from central Spitsbergen. Polar Research, 2:5775.Google Scholar
Schmitz, M.D. and Davydov, V.I. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian–early Permian (Cisuralian) time scale and Pan-Euramerican chronostratigraphic correlation. Geological Society of America Bulletin, 127:549577.Google Scholar
Stemmerik, L., Larson, P. A., Larssen, G. B., Mørk, A., and Simonsen, B. T. 1994. Depositional evolution of lower Permian Palaeoaplysina build-ups, Kapp Duner Formation, Bjørnøya, Arctic Norway. Sedimentary Geology, 92:161174.Google Scholar
Stern, C. W., Webby, B. D., Nestor, H., and Stock, C. W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica, 44:170.Google Scholar
Thorsteinsson, R. 1974. Carboniferous and Permian stratigraphy of Axel Heiberg Island and western Ellesmere Island, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin, 224:1115.Google Scholar
Vachard, D. and Kabanov, P. 2007. Palaeoaplysinella gen. nov. and Likinia Ivanova and Ilkhovkii, 1973 emend., from the type Moscovian (Russia) and the algal affinities of the ancestral palaeoaplysinaceae n. comb. Geobios, 40:849860.Google Scholar
Vennin, E., Boisseau, T., Proust, J. N., and Chuvashov, B. I. 2002. Influence of eustasy and tectonism on reef architecture in early Permian reef complexes, southern Urals, Russia, p. 205218. In Zempolich, W. G. and Cook, H. E. (eds.), Paleozoic Carbonates of the Commonwealth of Independent States (CIS): Subsurface Reservoirs and Outcrop Analogs. Society for Sedimentary Geology Special Publication 74.Google Scholar
Wahlman, G. P. 2002. Upper Carboniferous–lower Permian (Bashkirian–Kungurian) mounds and reefs, p. 271338. In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa, Oklahoma.Google Scholar
Wahlman, G. P. and Konovalova, M. V. 2002. Upper Carboniferous–lower Permian carbonate bank, subpolar pre-Ural Mountains, northern Russia, p. 219242. In Zempolich, W. G. and Cook, H. E. (eds.), Paleozoic Carbonates of the Commonwealth of Independent States (CIS): Subsurface Reservoirs and Outcrop Analogs. SEPM Special Publication 74, Tulsa, Oklahoma.Google Scholar
Wardlaw, B. R., Davydov, V., Shilong, M., and Henderson, C. M. 1996. New reference sections for the upper Carboniferous and lower Permian in Northeast Nevada. Permophiles, 31:510.Google Scholar
Watkins, R. and Wilson, E. C. 1989. Paleoecologic and biogeographic significance of the biostromal organism Palaeoaplysina in the Lower Permian McCloud Limestone, Eastern Klamath Mountains, California. PALAIOS, 4:181192.Google Scholar
West, R. R. 1988. Temporal Changes in Carboniferous Reef Mound Communities. PALAIOS, 3:152169.Google Scholar
Wray, J. L. 1964. Archaeolithophyllum, an abundant calcareous alga in limestones of the Lansing Group (Pennsylvanian), southeastern Kansas. Kansas Geological Survey, Bulletin, 170:113.Google Scholar
Wray, J. L. 1977. Calcareous Algae. Elsevier, Amsterdam, 185 p.Google Scholar
Zubin-Stathopoulos, K. D., Beauchamp, B., Davydov, V. I., and Henderson, C. M. 2012. Variability of Pennsylvanian-Permian carbonate associations and implications for northwest Pangaea Palaeogeography, East-Central British Columbia, Canada, p. 4772. In Gasiewicz, A., and Slowakiewicz, M. (eds.), Late Palaeozoic Climate Cycles: Their Evolutionary, Sedimentological and Economic Impact. Geological Society Special Publication 376, London.Google Scholar