Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:03:21.917Z Has data issue: false hasContentIssue false

The origin and significance of zigzag microstructure in late Paleozoic Lophophyllidium (Anthozoa, Rugosa)

Published online by Cambridge University Press:  20 May 2016

James E. Sorauf
Affiliation:
Department of Geological Sciences, Binghamton University, Binghamton, N.Y. 13902-6000,
Gregory E. Webb
Affiliation:
School of Natural Resource Sciences, Queensland University of Technology, GPO 2434, Brisbane, QLD 4001, Australia,

Abstract

In late Paleozoic solitary Rugosa, the zigzag microstructure as defined by Schindewolf (1942) is related to presence of an elevated magnesium content within biogenic calcite (intermediate magnesian calcite, IMC) and its subsequent loss during diagenesis by microdissolution and neomorphism. This particular microstructure has been recognized with certainty only in some Carboniferous and Permian rugose corals (e.g., Lophophyllidium spp.). Septal and other skeletal microstructures in those corals are dominantly (oblique) sloping-lamellar, which is also interpreted as diagenetic in origin. Two directions of oblique lamellae commonly occur in thickened skeletal elements, forming chevrons that make up zigzag microstructure with its orientation determined by presence of microdolomite blebs within skeletal calcite. Geochemical studies of corals from the Mississippian Imo Formation of Arkansas, the Pennsylvanian Buckhorn asphalt of Oklahoma and Pennsylvanian Kendrick Shale of Kentucky all indicate that magnesium content in skeletal calcite of the corals was elevated, with a maximum in the neighborhood of six to eight mole percent CaCO3, thereby forming intermediate magnesium calcite. Corals with this zigzag microstructure apparently only occurred during the late Paleozoic interval of “aragonite seas”; as a result, this diagenetic behavior of rugose corals can serve as a proxy for secular change in marine chemistry and/or climate.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, D. F., Peacor, D. R., and Wilkinson, B. H. 1982. The sequence and mechanism of low-temperature dolomite formation: calcian dolomites in a Pennsylvanian echinoderm. Journal of Sedimentary Petrology, 52:5970.Google Scholar
Brand, U. 1981. Mineralogy and chemistry of the lower Pennsylvanian Kendrick fauna, eastern Kentucky, 1. Trace elements. Chemical Geology, 32:116.CrossRefGoogle Scholar
Brand, U. 1983. Mineralogy and chemistry of the lower Pennsylvanian Kendrick fauna, eastern Kentucky, U.S.A., 3. Diagenetic and paleoenvironmental analysis. Chemical Geology, 40:167181.CrossRefGoogle Scholar
Brand, U. 1987. Biogeochemistry of nautiloids and paleoenvironmental aspects of Buckhorn seawater (Pennsylvanian), southern Oklahoma. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:255264.CrossRefGoogle Scholar
Brand, U. 1989. Aragonite-calcite transformation based on Pennsylvanian molluscs. Geological Society of America Bulletin, 101:377390.2.3.CO;2>CrossRefGoogle Scholar
Brand, U., and Veizer, J. 1980. Chemical diagenesis of a multicomponent carbonate system—1: trace elements. Journal of Sedimentary Petrology, 50:12191236.Google Scholar
DeGroot, G. E. 1963. Rugose corals from the Carboniferous of northern Palencia (Spain). Leidse Geologische Mededelingen, 29:1123.Google Scholar
Ezaki, Y. 1991. Permian corals from Abadeh and Julfa, Iran, west Tethys. Journal of the Faculty of Sciences, Hokkaido University, Series 4, 23:53146.Google Scholar
Fedorowski, J. 1974. The upper Palaeozoic tetracoral genera Lophophyllidium and Timorphyllum . Palaeontology, 17:441473.Google Scholar
Fedorowski, J., and Bamber, E. W. 2001. Guadalupian (Middle Permian) solitary rugose corals from the Degerböls and Trold Fiord formations, Ellesmere and Melville islands, Canadian Arctic Archipelago. Acta Geologica Polonica, 51:3179.Google Scholar
Flügel, H. W. 1966. Paläozoische Korallen aus der Tibetischen Zone von Dolpo (Nepal). Jahresbericht der Geologischen Bundesanstalt, Wien, Sonderband, 12:101120.Google Scholar
Flügel, H. W. 1972. Die paläozoischen Korallenfaunen Ost-Irans 2. Rugosa und Tabulata der Jamal-Formation (Darwasian?, Perm). Jahresbricht der Geologischen Bundesanstalt, Wien, 115:49102.Google Scholar
Hill, D. 1938. A Monograph on the Carboniferous rugose corals of Scotland. Palaeontological Society of London, Part 1:178.Google Scholar
Hill, D. 1981. Subclasses Rugosa, Tabulata, p. F1F762. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata, Supplement 1. Geological Society of America and University of Kansas Press, Boulder and Lawrence.Google Scholar
Ilyina, T. G. 1965. Chetyrekhlutchevye korally pozdneaei permi i rannega triasa Zakavkazia. Trudy Paleontologicheskiy Instituta Akademii Nauk SSSR, 107:1104.Google Scholar
Kato, M. 1963. Fine skeletal structures in Rugosa. Journal of the Faculty of Science, Hokkaido University, IV, 11:571630.Google Scholar
Kato, M. 1976. A Permian rugose coral Euryphyllum from Kashmir. Journal of the Faculty of Science, Hokkaido University, IV, 17:357364.Google Scholar
Kato, M. 1979. Some upper Paleozoic corals from Turkey. Journal of the Faculty of Science, Hokkaido University, IV, 19:137148.Google Scholar
Kullmann, J. 1997. Rugose corals in non-reef environments—the case of the “Cyathaxonia fauna.” Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica, 92:187195.Google Scholar
Lafuste, J. G. 1984. Microstructure of Planalveolites Lang and Smith, 1939 (Tabulata, Silurian), p. 485488. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., McIntyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Fourth International Symposium on Fossil Cnidaria, Washington, D.C., August, 1983. Palaeontographica Americana, 54.Google Scholar
Niermann, H. T. 1975. Polycoeliidae aus dem Oberperm von Basleo auf Timor. Münstersche Forschungsberichte in Geologie und Paläontologie, 37:131225.Google Scholar
Oekentorp, K. 1972. Sekundärstrukturen bei paläozoischen Madreporaria. Münstersche Forschungsberichte in Geologie und Paläontologie, 24:35108.Google Scholar
Oekentorp, K. 1974. Electron microscopic studies on skeletal structures in Coelenterata and their systematic value. Proceedings of the Second International Coral Reef Symposium, 2:321326.Google Scholar
Oekentorp, K. 1980. Aragonit und Diagenese bei jungpaläozoischen Korallen. Münstersche Forschungen zur Geologie und Paläontologie, 52:119239.Google Scholar
Oekentorp, K. 2001. Review on diagenetic microstructures in fossil corals—a controversial discussion. Bulletin of the Tohoku University Museum of Natural History, Sendai, 1:193209.Google Scholar
Oekentorp-Küster, P., and Oekentorp, K. 1992. Rugose Corallenfaunen des Mittel- und Ober-Devons der zentralen Karnischen Alpen. Jahrbuch des Bundesanstalt, 135:233260.Google Scholar
Rodriguez, S., and Kullmann, J. 1990. Hornförmige eizelkorallen (Rugosa) aus spätoberkarbonischen flachwasser-ablagerungen des Kantabrischen Gebirges (Nordspanien). Palaeontographica, A, 210:1940.Google Scholar
Sadd, J. L. 1991. Tectonic influences on carbonate deposition and diagenesis, Buckhorn Asphalt, Deese Group (Desmoinesian), Arbuckle Mountains, Oklahoma. Journal of Sedimentary Petrology, 61:2842.Google Scholar
Sandberg, P. A. 1975. Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. Journal of Paleontology, 49:587606.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305:1922.CrossRefGoogle Scholar
Sandberg, P. A. 1984. Recognition criteria for calcitized skeletal and non-skeletal aragonites, p. 272281. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., McIntyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Fourth International Symposium on Fossil Cnidaria, Washington, D.C., August 1983. Palaeontographica Americana, 54.Google Scholar
Schindewolf, O. H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Abhandlungen des Reichsamts für Bodenforschung, Neue Folge, 204, 324 p.Google Scholar
von Schouppé, A., and Stacul, P. 1966. Morphogenese und Bau des Skelettes der Pterocorallia. Palaeontographica, A, Supplement, 11, 186 p.Google Scholar
von Schouppé, A., and Oekentorp, K. 1974. Morphogenese und Bau der Tabulata. Palaeontographica, A, Supplement, 148:79194.Google Scholar
Schroeder, S., Lütte, B.-P., and Oekentorp, K. 1996. Enallophrentis (Rugosa, Siphonophrentidae) aus dem Over-Eifelium/Mittel-Devon der Dollendorfer Mulde (Rheinisches Schiefergebirge/Eifel). Geologica et Palaeontologica, 30:1531.Google Scholar
Semenoff-Tian-Chansky, P. 1984. Microstructure of Siphonodendron (Lithostrotionidae), p. 489500. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., McIntyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Fourth International Symposium on Fossil Cnidaria, Washington, D.C., August 1983. Palaeontographica Americana, 54.Google Scholar
Sorauf, J. E. 1977. Microstructure and magnesium content in Lophophyllidium from the lower Pennsylvanian of Kentucky. Journal of Paleontology, 51:150160.Google Scholar
Sorauf, J. E. 1978. Original structure and composition of Permian rugose and Triassic scleractinian corals. Palaeontology, 21:321339.Google Scholar
Sorauf, J. E. 1984. Upper Permian corals from Timor and diagenesis, p. 294302. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., McIntyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Fourth International Symposium on Fossil Cnidaria, Washington, D.C., August 1983. Palaeontographica Americana, 54.Google Scholar
Sorauf, J. E. 1996a. Biocrystallization models and skeletal structure of Phanerozoic corals, p. 159184. In Stanley, G. D. Jr. (ed.), Paleobiology and Biology of Corals. The Paleontological Society Papers, 1.Google Scholar
Sorauf, J. E. 1996b. Geochemical signature of incremental growth: rugose corals from the Middle Devonian Traverse Group, Michigan. Palaios, 11:6470.CrossRefGoogle Scholar
Sorauf, J. E. 1997. Geochemical signature of incremental growth and diagenesis of skeletal structure in Tabulophyllum traversensis (Winchell, 1866). Bolotín de la Real Sociedad Española de Historia Natural, Sección Geológica, 92:7786.Google Scholar
Squires, R. L. 1973. Burial environment, diagenesis mineralogy, and magnesium and strontium contents of skeletal carbonates in the Buckhorn Asphalt of middle Pennsylvanian age, Arbuckle Mountains, Oklahoma. Unpublished Ph.D. thesis, California Institute of Technology, Pasadena, 184 p.Google Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.CrossRefGoogle Scholar
Stehli, F. 1956. Shell mineralogy in Paleozoic invertebrates. Science, 123:10311032.CrossRefGoogle ScholarPubMed
Sutherland, P. K. 1958. Carboniferous Stratigraphy and Rugose Coral Faunas of Northeastern British Columbia. Geological Survey of Canada, Memoirs, 295:1177.Google Scholar
Tidten, G. 1972. Morphogenetisch-ontogenetische Untersuchungen an Pterocorallia aus dem Permo-Karbon von Spitzbergen. Palaeontographica, A, 139, 63 p.Google Scholar
Webb, G. E., and Sorauf, J. E. 2001. Diagenesis and microstructure of a rugose coral (Lophophyllidium sp.) from the Buckhorn Asphalt (Upper Carboniferous), south-central Oklahoma. Bulletin of the Tohoku University Museum of Natural History, Sendai, 1:236244.Google Scholar
Webb, G. E., and Sorauf, J. E. 2002. Zigzag microstructure in rugose corals: a possible indicator of relative seawater Mg/Ca ratios. Geology, 30:415418.2.0.CO;2>CrossRefGoogle Scholar
Webb, G. E., and Sutherland, P. K. 1993. Coral fauna of the Imo Formation, uppermost Chesterian, north-central Arkansas. Journal of Paleontology, 67:179193.CrossRefGoogle Scholar