Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T19:24:31.616Z Has data issue: false hasContentIssue false

Ontogeny and heterochrony in the Middle Carboniferous ammonoid Arkanites relictus (Quinn, McCaleb, and Webb) from northern Arkansas

Published online by Cambridge University Press:  14 July 2015

Daniel A. Stephen
Affiliation:
Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843
Walter L. Manger
Affiliation:
Department of Geosciences, University of Arkansas, Fayetteville, Arkansas 72701
Cathy Baker
Affiliation:
Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas 72801

Abstract

The reticuloceratid ammonoid Arkanites relictus (Quinn, McCaleb, and Webb, 1962) is represented by hundreds to thousands of individuals from horizons isolated both stratigraphically and geographically in northern Arkansas. These assemblages appear to represent mass mortality events resulting from a semelparous reproductive strategy. Arkanites relictus occurs as a dimorphic pair (depressed, widely umbilicate, cadiconic conchs and compressed, narrowly umbilicate, pachyconic conchs) thought to reflect sexual dimorphism. Late stage ontogenetic modifications, such as septal crowding and change in aperture profile, are widely cited evidence of sexual maturity in ammonoids. Septal crowding begins at a predictable ontogenetic stage in the compressed forms of A. relictus, but specimens with cadiconic conchs do not have crowded septa even at the largest diameters available.

Depending on the trait examined and the proxy for age of individuals, the dimorphism in Arkanites relictus (using the depressed form as the reference morph) is the result of acceleration, neoteny, or hypermorphosis plus neoteny. If size (diameter) is considered a proxy for age, the dimorphs were the same age at death, and the septa in the compressed variants developed via acceleration relative to the depressed variants. Regarding conch shape (width vs. diameter), the compressed morphs developed via neoteny relative to the depressed morphs. If septal count is considered a proxy for age, the dimorphs were not the same age at death, and the compressed forms were produced by a combination of hypermorphosis plus neoteny, i.e., they grew longer yet slower than the depressed forms. In A. relictus, the heterochronic processes of hypermorphosis and neoteny may have been operating simultaneously, which is an interesting possibility because it is an example of a combination of both peramorphic and paedomorphic processes.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, <[email protected]>

References

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology, 5(3):296317.CrossRefGoogle Scholar
Baesemann, J. F., and Lane, H. R. 1985. Taxonomy and Evolution of the genus Rhachistognathus Dunn (Conodonta; Late Mississippian to Early Middle Pennsylvanian), p. 93136. In Lane, H. R. and Ziegler, W. (eds.), Toward a Boundary in the Middle of the Carboniferous: Stratigraphy and Paleontology. Courier Forschungsinstitut Senckenberg, 74.Google Scholar
Baker, C. 1978. Intraspecific variation in the Morrowan ammonoid Arkanites relictus (Quinn, McCaleb, and Webb). Unpublished Master of Science thesis, University of Arkansas, 177 p.Google Scholar
Boletzky, S. v. 1983. Sepiola robusta, p. 5367. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume I. Species Accounts. Academic Press, London.Google Scholar
Bucher, H., Landman, N. H., Klofak, S. M., and Guex, J. 1996. Mode and rate of growth in ammonoids, p. 407461. In Landman, N. H., Tanabe, K. and Davis, R. A. (eds.), Ammonoid Paleobiology. Topics in Geobiology 13, Plenum Press, New York.CrossRefGoogle Scholar
Callomon, J. H. 1980. Dimorphism in ammonoids, p. 257273. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematics Association Special Volume No. 18, Academic Press, London and New York.Google Scholar
Davis, R. A. 1972. Mature modification and dimorphism in selected late Paleozoic ammonoids. Bulletin of American Paleontology, 62(272):23130.Google Scholar
Davis, R. A., Landman, N. H., Dommergues, J. L., Marchand, D., and Bucher, H. 1996. Mature modifications and dimorphism in ammonoid cephalopods, p. 463539. In Landman, N. H., Tanabe, K. and Davis, R. A. (eds.), Ammonoid Paleobiology. Topics in Geobiology 13, Plenum Press, New York.CrossRefGoogle Scholar
Dodd, J. R., and Stanton, R. J. Jr. 1990. Paleoecology: Concepts and Applications. John Wiley & Sons, New York, 502 p.Google Scholar
Dommergues, J. L., David, B., and Marchand, D. 1986. Les relations ontogenèse-phylogenèse: applications paléontologiques. Geobios, 19(3):335356.CrossRefGoogle Scholar
Engeser, T. 1990. Major events in cephalopod evolution, p. 119138. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Systematics Association Special Volume 42, Clarendon Press, Oxford.Google Scholar
Engeser, T. 1996. The position of the Ammonoidea within the Cephalopoda, p. 319. In Landman, N. H., Tanabe, K. and Davis, R. A. (eds.), Ammonoid Paleobiology. Topics in Geobiology 13, Plenum Press, New York.CrossRefGoogle Scholar
Gordon, M. Jr. 1965. Carboniferous Cephalopods of Arkansas. U.S. Geological Survey Professional Paper 460, 322 p.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, Massachusetts, 501 p.Google Scholar
Handford, C. R. 1996. Baselap patterns and the recognition of lowstand exposure and drowning—a Mississippian ramp example and its seismic signature. Journal of Sedimentary Research, B 65(3):323337.Google Scholar
Hayasaka, S., Oki, K., Tanabe, K., Saisho, T., and Shinomiya, A. 1987. On the habitat of Nautilus pompilius in Tañon Strait (Philippines) and the Fiji Islands, p. 179200. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus, the biology and paleobiology of a living fossil. Topics in Geobiology 6, Plenum Press, New York.CrossRefGoogle Scholar
Jones, D. S. 1988. Sclerochronology and the size versus age problem, p. 93108. In McKinney, M. L. (ed.), Heterochrony in Evolution. Topics in Geobiology 7, Plenum Press, New York.CrossRefGoogle Scholar
Kirkendall, L. R., and Stenseth, N. C. 1985. On defining “breeding once.” The American Naturalist, 125(2):189204.CrossRefGoogle Scholar
Knipe, J. H., and Beeman, R. D. 1978. Histological observations on oogenesis in Loligo opalescens . California Department of Fish and Game, Fisheries Bulletin, 169:2334.Google Scholar
Korn, D. 1995. Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Wocklumeria Stufe. Lethaia, 28:155165.CrossRefGoogle Scholar
Kristensen, T. K. 1983. Gonatus fabricii, p. 159173. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume 1. Species Accounts. Academic Press, London.Google Scholar
Landman, N. H. 1988a. Early Ontogeny of Mesozoic Ammonites and Nautilids, p. 215228. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods Present and Past. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Landman, N. H. 1988b. Heterochrony in ammonites, p. 159182. In McKinney, M. L. (ed.), Heterochrony in Evolution. Topics in Geobiology 7, Plenum Press, New York.CrossRefGoogle Scholar
Landman, N. H., Tanabe, K., and Shigeta, Y. 1996. Ammonoid embryonic development, p. 463539. In Landman, N. H., Tanabe, K. and Davis, R. A. (eds.), Ammonoid Paleobiology. Topics in Geobiology 13, Plenum Press, New York.CrossRefGoogle Scholar
Lane, H. R., and Straka, J. J. II. 1977. Late Mississippian and Early Pennsylvanian Conodonts Arkansas and Oklahoma. Geological Society of America Special Paper 152, Boulder, Colorado, 144 p.Google Scholar
Lehmann, U. 1967. Ammoniten mit Kieferappparat und Radula aus Lias-Geschieben. Paläontologie Zeitschrift, 41:3845.CrossRefGoogle Scholar
Lehmann, U. 1981. The Ammonites: Their Life and Their World. Cambridge University Press, Cambridge, 246 p.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The Theory of Island Biogeography. Monographs in Population Biology 1, Princeton University Press, Princeton, New Jersey, 203 p.Google Scholar
Manger, W. L., and Saunders, W. B. 1980. Lower Pennsylvanian (Morrowan) ammonoids from the North American midcontinent. Paleontological Society Memoir 10, Journal of Paleontology, 54(3) supplement, 56 p.CrossRefGoogle Scholar
Manger, W. L., and Sutherland, P. K. 1984. The Mississippian-Pennsylvanian boundary in the southern midcontinent, United States, p. 369376. In Sutherland, P. K. and Manger, W. L. (eds.), Compte rendu, Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Volume 2. Biostratigraphy. Southern Illinois University Press, Carbondale, Illinois.Google Scholar
Manger, W. L., Meeks, L. K., and Russel, R. A. 1999a. Dimorphism in Middle Carboniferous ammonoids from the southern midcontinent, United States. 5th International Cephalopod Symposium, Abstracts Volume, p. 80.Google Scholar
Manger, W. L., Stephen, D. A., and Meeks, L. K. 1999b. Possible cephalopod reproductive mass mortality reflected by Middle Carboniferous assemblages, Arkansas, southern United States, p. 345364. In Olóriz, F. and Rodríguez-Tovar, F. J. (eds.), Advancing Research on Living and Fossil Cephalopods. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Mangold, K. 1987. Reproduction, p. 329350. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume II. Comparative Reviews. Academic Press, London.Google Scholar
McCaleb, J. A. 1968. Lower Pennsylvanian ammonoids from the Bloyd Formation of Arkansas and Oklahoma. Geological Society of America Special Paper 96, 123 p.Google Scholar
McCaleb, J. A., Quinn, J. H., and Furnish, W. M. 1964. The ammonoid Family Girtyoceratidae in the southern midcontinent. Oklahoma Geological Survey, Circular 67, 41 p.Google Scholar
McKinney, M. L. 1988a. Classifying heterochrony, allometry, size, and time, p. 1734. In McKinney, M. L. (ed.), Heterochrony in Evolution. Topics in Geobiology 7, Plenum Press, New York.CrossRefGoogle Scholar
McKinney, M. L. (ed.). 1988b. Heterochrony in Evolution. Topics in Geobiology 7, Plenum Press, New York, 348 p.Google Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: The Evolution of Ontogeny. Plenum Press, New York, 437 p.CrossRefGoogle Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology, 60(1):413.CrossRefGoogle Scholar
McNamara, K. J. 1995a. Sexual dimorphism: the role of heterochrony, p. 6589. In McNamara, K. J. (ed.), Evolutionary Change and Heterochrony. John Wiley & Sons, New York.Google Scholar
McNamara, K. J. (ed.). 1995b. Evolutionary Change and Heterochrony. John Wiley & Sons, New York, 286 p.Google Scholar
Miller, A. K., and Moore, C. A. 1938. Cephalopods from the Carboniferous Morrow Group of northern Arkansas and Oklahoma. Journal of Paleontology, 12(4):341354.Google Scholar
Neige, P., Marchand, D., and Bernard, L. 1997. Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia, 30:145155.CrossRefGoogle Scholar
Quinn, J. H., McCaleb, J. A., and Webb, J. H. 1962. A Pennsylvanian Eumorphoceras from Arkansas. Journal of Paleontology, 36(1):112114.Google Scholar
Ramsbottom, W. H. C., and Saunders, W. B. 1985. Evolution and evolutionary biostratigraphy of Carboniferous ammonoids. Journal of Paleontology, 59(1):123139.Google Scholar
Sarti, C. 1999. Whorl width in the body chamber of ammonites as a sign of dimorphism, p. 315332. In Olóriz, F. and Rodríguez-Tovar, F. J. (eds.), Advancing Research on Living and Fossil Cephalopods. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Saunders, W. B. 1973. Upper Mississippian ammonoids from Arkansas and Oklahoma. Geological Society of America Special Paper 145, 110 p.Google Scholar
Saunders, W. B., and Spinosa, C. 1978. Sexual dimorphism in Nautilus from Palau. Paleobiology, 4(3):349358.CrossRefGoogle Scholar
Saunders, W. B., and Landman, N. H. (eds.). 1987. Nautilus, the biology and paleobiology of a living fossil. Topics in Geobiology 6, Plenum Press, New York, 622 p.Google Scholar
Saunders, W. B., and Ward, P. D. 1987. Ecology, distribution, and population characteristics of Nautilus, p. 137162. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus, the biology and paleobiology of a living fossil. Topics in Geobiology 6, Plenum Press, New York.CrossRefGoogle Scholar
Saunders, W. B., Manger, W. L., and Gordon, M. Jr. 1977. Upper Mississippian and Lower and Middle Pennsylvanian ammonoid biostratigraphy of northern Arkansas, p. 117137. In Sutherland, P. K. and Manger, W. L. (eds.), Mississippian-Pennsylvanian boundary in northeastern Oklahoma and northwestern Arkansas. Oklahoma Geological Survey Guidebook 18.Google Scholar
Stephen, D. A. 1997. Cephalopod mass mortality and gigantism, Middle Carboniferous (Chesterian–Morrowan) strata, northern Arkansas. Unpublished Master of Science thesis, University of Arkansas, 110 p.Google Scholar
Summers, W. C. 1983. Loligo pealei, p. 115142. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume I. Species Accounts. Academic Press, London.Google Scholar
Sutherland, P. K. 1988. Late Mississippian and Pennsylvanian depositional history in the Arkoma basin area, Oklahoma and Arkansas. Geological Society of America Bulletin, 100(11):17871802.2.3.CO;2>CrossRefGoogle Scholar
Sutherland, P. K., and Manger, W. L. (eds.). 1979. Ozark and Ouachita Shelf-to-Basin Transition Oklahoma–Arkansas. Oklahoma Geological Survey Guidebook 19, 81 p.Google Scholar
Tanabe, K., Landman, N. H., Mapes, R. H., and Faulkner, C. J. 1993. Analysis of a Carboniferous embryonic ammonoid assemblage—implications for ammonoid embryology. Lethaia, 26(2):215224.CrossRefGoogle Scholar
Van Heukelem, W. F. 1983. Octopus cyanea, p. 267276. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume I. Species Accounts. Academic Press, London.Google Scholar
Ward, P. D. 1983. Nautilus macromphalus, p. 1128. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume I. Species Accounts. Academic Press, London.Google Scholar
Ward, P. D. 1987. The natural history of Nautilus . Allen & Unwin, Boston, 267 p.Google Scholar
Ward, P. D., and Bandel, K. 1987. Life History Strategies in Fossil Cephalopods, p. 329350. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume II. Comparative Reviews. Academic Press, London.Google Scholar
Westermann, G. E. G. 1964. Sexual-Dimorphismus bei Ammonoideen und seine Bedeutung für Taxionomie der Otoitidae (Einschliesslich Sphaeroceratinae; Ammonitina, M. Jura). Palaeontographica Abteilung, A124(1-3):3373.Google Scholar
Worms, J. 1983. Loligo vulgaris, p. 143157. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Volume I. Species Accounts. Academic Press, London.Google Scholar