Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T05:04:18.389Z Has data issue: false hasContentIssue false

A new synziphosurine (Chelicerata: Xiphosura) from the Late Llandovery (Silurian) Waukesha Lagerstätte, Wisconsin, USA

Published online by Cambridge University Press:  20 May 2016

Rachel A. Moore
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, United Kingdom,
Derek E. G. Briggs
Affiliation:
Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109
Simon J. Braddy
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, United Kingdom,
Lyall I. Anderson
Affiliation:
Department of Geology and Zoology, National Museums of Scotland, Chambers Street, Edinburgh EH1 1JF, United Kingdom
Donald G. Mikulic
Affiliation:
Illinois State Geological Survey, Champaign 61820 (published with permission of the Chief of the Illinois State Geological Survey)
Joanne Kluessendorf
Affiliation:
Weis Earth Science Museum, University of Wisconsin-Fox Valley, Menasha 54952

Abstract

A new synziphosurine (Chelicerata: Xiphosura) is described from the Late Llandovery (Silurian) Konservat-Lagerstätte of Waukesha, Wisconsin, USA. Venustulus waukeshaensis n.gen. and sp. is characterized by a semicircular carapace with a slightly procurved posterior margin lacking genal spines and an opisthosoma composed of 10 freely articulating segments, divided into a preabdomen of seven segments with blunt pleurae and a postabdomen of three segments lacking pleurae. The tail spine is short and styliform. This is the earliest known unequivocal synziphosurine, extending their fossil record from the Wenlock to the Llandovery, and only the second species to be described with prosomal appendages; the presence of six pairs (a pair of chelicerae and five pairs of walking legs) contrasts with the seven in the synziphosurine Weinbergina opitzi, but is comparable to the number in modern horseshoe crabs. V. waukeshaensis n. gen. and sp. is not assigned to a family here pending a wider revision, but it bears most resemblance to the Weinberginidae.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L. I. 1996. Taphonomy and taxonomy of Palaeozoic Xiphosura. Unpublished Ph.D. dissertation, University of Manchester, Manchester, U.K., 413 p.Google Scholar
Anderson, L. I. 1998. A new specimen of the Silurian synziphosurine arthropod Cyamocephalus. Proceedings of the Geologists' Association, 110:211216.CrossRefGoogle Scholar
Anderson, L. I., and Moore, R. A. 2004. Bembicosoma re-examined: A xiphosuran from the Silurian of the North Esk Inlier, Pentland Hills, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94:199206.Google Scholar
Anderson, L. I., and Selden, P. A. 1997. Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura. Lethaia, 30:1931.Google Scholar
Anderson, L. I., Poschmann, M., and Brauckmann, C. 1998. On the Emsian (Lower Devonian) arthropods of the Rhenish Slate Mountains: 2. The synziphosurine Willwerathia. Paläontologische Zeitschrift, 72:325336.Google Scholar
Andrews, H. E., Brower, J. C., Gould, S. J., and Reyment, R. A. 1974. Growth and variation in Eurypterus remipes DeKay. Bulletin of the Geological Institution of the University of Upsala, n.s., 4, 6:81114.Google Scholar
Bartels, C., Briggs, D. E. G., and Brassel, G. 1998. Fossils of the Hunsrück Slate—marine life in the Devonian. Cambridge University Press, Cambridge, 309 p.Google Scholar
Braddy, S. J., and Dunlop, J. A. 1997. The functional morphology of mating in the Silurian eurypterid, Baltoeurypterus tetragonophthalmus (Fischer, 1839). Zoological Journal of the Linnean Society, 121:435461.Google Scholar
Briggs, D. E. G., Bruton, D. I., and Whittington, H. B. 1979. Appendages of the arthropod Aglaspis spinifer (Upper Cambrian, Wisconsin) and their significance. Palaeontology, 22:167180.Google Scholar
Briggs, D. E. G., Siveter, David J., and Siveter, Derek J. 1996. Soft-bodied fossils from a Silurian volcaniclastic deposit. Nature, 382:248250.Google Scholar
Clarke, J. M., and Ruedemann, R. 1912. The Eurypterida of New York. New York State Museum Memoir, 14, 439 p.Google Scholar
Currie, L. D. 1927. On Cyamocephalus, a new synxiphosurine from the Upper Silurian of Lesmahago, Lanarkshire. Geological Magazine, 64:153157.Google Scholar
Dunlop, J. A. 1999. A review of chelicerate evolution. Boletin de la Sociedad Entomológica Aragonesa, 26:255272.Google Scholar
Dunlop, J. A., and Selden, P. A. 1997. The early history and phylogeny of the chelicerates, p. 221235. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman & Hall, London.Google Scholar
Dunlop, J. A., and Webster, M. 1999. Fossil evidence, terrestrialization and arachnid phylogeny. The Journal of Arachnology, 27:8693.Google Scholar
Eichwald, E. 1854. Die Grauwackenschichten von Liv-und Esthland. Bulletin de la Société Imperiale des Nauralistes de Moscou, 27:1211.Google Scholar
Eldredge, N. 1974. Revision of the suborder Synziphosurina (Chelicerata: Merostomata), with remarks on merostome phylogeny. American Museum Novitates, Number 2543, 41 p.Google Scholar
Flower, R. 1969. Merostomes from a Cotter horizon of the El Paso Group. New Mexico Bureau of Mines and Mineral Resources Memoir, 22(4):3544.Google Scholar
Heymons, R. 1901. Die Entwicklungsgeschichte der Scolopender. Zoologica, 33:1244.Google Scholar
Kluessendorf, J. 1994. Predictability of Silurian Fossil-Lagerstätten in North America. Lethaia, 27:337344.Google Scholar
Kluessendorf, J., and Mikulic, D. G. 1996. An early Silurian sequence boundary in Illinois and Wisconsin. Geological Society of American Special Paper, 306:177185.Google Scholar
Kluessendorf, J., and Mikulic, D. G. 1998. Paleokarst, sea-level fluctuations and sequence stratigraphy in Silurian strata of Illinois, Indiana, and Wisconsin. Geological Society of America Abstracts with Program, 30(5):28.Google Scholar
Latreille, P. A. 1802. Histoire Naturelle, Générale et Particulière, des Crustacés et des Insectes. Vol. 3. F. Dufart, Paris, 467 p.Google Scholar
Laurie, M. 1899. On a Silurian scorpion and some additional eurypterid remains from the Pentland Hills. Transactions of the Royal Society of Edinburgh, Earth Sciences, 39:575589.Google Scholar
Lehmann, W. M. 1956. Beobachtungen an Weinbergina opitzi (Merost., Devon). Senckenbergiana lethaia, 37:6777.Google Scholar
Linnaeus, C. 1758. Systema Naturae (tenth edition). Salvius, Stockholm, 1, 824 p.Google Scholar
Loduca, S. T., Kluessendorf, J., and Mikulic, D. G. 2003. A new noncalcified dasycladalean alga from the Silurian of Wisconsin. Journal of Paleontology, 77:11521158.Google Scholar
Mikulic, D. G., and Kluessendorf, J. 1998. Sequence stratigraphy and depositional environments of the Silurian and Devonian rocks of southeastern Wisconsin. Society of Sedimentary Geology (SEPM) Great Lakes Section/Michigan Basin Geological Society Fall Field Conference Guidebook, 84 p.Google Scholar
Mikulic, D. G., and Kluessendorf, J. 1999. A structurally-controlled reef trend in Silurian rocks of the Michigan Basin. Geological Society of America Abstracts with Program, 31(7):241.Google Scholar
Mikulic, D. G., and Kluessendorf, J. 2001. Environmental biases of Silurian Fossil Konservat Lagerstätten. North American Paleontological Convention 2001, Program & Abstracts, PaleoBios, 21 (Supplement to No. 2):9394.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985a. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. Philosophical Transactions of the Royal Society of London B, 311:7585.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985b. A Silurian soft-bodied biota. Science, 228:715717.Google Scholar
Moore, R. A., Briggs, D. E. G., and Bartels, C.In press. A new specimen of Weinbergeiner opitzi (Chelicerata: Xiphosura) from the Lower Devonian Hunsrück Slate, Germany. Paläontologische Zeitschrift.Google Scholar
Nieszkowski, J. 1859. Der Eurypterus remipes aus den obersilurischen Schichten der Insel Oesel. Archiv für die Naturkunde Liv-, Ehst und Kurlands, 2:299344.Google Scholar
Racheboeuf, P. R., Vannier, J., and Anderson, L. I. 2002. A new three-dimensionally preserved xiphosuran chelicerate from the Montceau-Les-Mines Lagerstätte (Carboniferous, France). Palaeontology, 45:125147.Google Scholar
Richter, R., and Richter, E. 1929. Weinbergina opitzi, n.g., n.sp,. ein Schwerttrager (Merost., Xiphos,) aus dem Devon (Rheinland). Senckenbergiana, 11:193209.Google Scholar
Ruedemann, R. 1916. Account of some new or little-known species of fossils, mostly from Paleozoic rocks of New York. New York State Museum Bulletin, 189:7122.Google Scholar
Scholl, G. 1977. Beirage zu Embryonalenentwicklung von Limulus polyphemus L. (Chelicerata, Xiphosura). Zoomorphologie, 86:99154.Google Scholar
Selden, P. A., and Drygant, D. M. 1987. A new Silurian xiphosuran from Podolia, Ukraine, USSR. Palaeontology, 30:537542.Google Scholar
Selden, P. A., and Siveter, D. J. 1987. The origin of the limuloids. Lethaia, 20:384392.Google Scholar
Shuster, C. N. Jr. 1982. A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae, p. 152. In Bonaventura, J., Bonaventura, C., and Tesh, S. (eds.), Physiology and Biology of Horseshoe Crabs: Studies on Normal and Environmentally Stressed Animals. Alan R. Liss, New York.Google Scholar
Siveter, D. J., and Selden, P. A. 1987. A new, giant xiphosurid from the Lower Namurian of Weardale, County Durham. Proceedings of the Yorkshire Geological Society, 46:153168.Google Scholar
Størmer, L. 1936. Eurypteriden aus dem Rheinischen Unterdevon. Abhandlungen der Preußischen Geologischen Landesanstalt. Neue Folge, 175:174.Google Scholar
Størmer, L. 1955. Merostomata, p. 441. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. P, Arthropoda 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Størmer, L. 1973. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany, Pt. 3, Eurypterida, Hughmilleriidae. Senckenbergiana lethaea, 54:119205.Google Scholar
Stürmer, W., and Bergström, J. 1981. Weinbergina, a xiphosuran arthropod from the Devonian Hunsrück Slate. Paläontologische Zeitschrift, 55:237255.Google Scholar
Waloszek, D., and Dunlop, J. A. 2002. A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology, 45:421446.Google Scholar
Waterston, C. D. 1985. Chelicerata from the Dinantian of Foulden, Berwickshire. Transactions of the Royal Society of Edinburgh, Earth Sciences, 76:2533.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Woodward, H. 1865. On a new genus of Eurypterida from the Lower Ludlow rocks of Leintwardine, Shropshire. Quarterly Journal of the Geological Society, 21:490492.CrossRefGoogle Scholar