Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T12:57:28.665Z Has data issue: false hasContentIssue false

A new species of the asteroid genus Betelgeusia (Echinodermata) from methane seep settings, Late Cretaceous of South Dakota

Published online by Cambridge University Press:  05 February 2018

Daniel B. Blake
Affiliation:
Department of Geology, 3028 NHB, 1301 W. Green St., Urbana, Illinois 61801, USA 〈[email protected]
William K. Halligan
Affiliation:
Northwest Paleontological Association, 1627 NW Viewmont Ct., Silverdale, Washington 98383, USA 〈[email protected]
Neal L. Larson
Affiliation:
Larson Paleontology Unlimited, 12799 Wolframite Rd., Keystone, South Dakota 57751, USA 〈[email protected]

Abstract

Betelgeusia brezinai new species (Radiasteridae, Paxillosida, Asteroidea) is described from diversely fossiliferous Upper Cretaceous methane seep deposits of South Dakota. Asteroids are rare at modern chemosynthetic settings, although a hydrothermal vent occurrence is known, and two possible fossil methane seep occurrences have been reported. The Radiasteridae is important to the interpretation of crown-group asteroid phylogeny. Two extant genera are assigned to the family: Radiaster is known from relatively few but geographically widely dispersed largely deeper-water settings, and Gephyreaster is uncommon over a range of depths in the North Pacific Ocean. Jurassic and Cretaceous radiasterids have been described from geographically widely separated localities. In morphological-based phylogenetic analyses, the Radiasteridae has been assigned to the order Paxillosida, and Gephyreaster is similarly placed in a molecular evaluation; Radiaster has not yet been treated in a molecular study. In molecular treatment, an approximately traditional Paxillosida is a sister taxon to a significant part of the traditional Valvatida. Comparative morphology of Mesozoic and extant asteroids enables a hypothesis for a stemward, Mesozoic paxillosidan.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, D.B., 1987, A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata): Journal of Natural History, v. 21, p. 481528.Google Scholar
Blake, D.B., 2013, Early asterozoan (Echinodermata) diversification: A paleontologic quandary: Journal of Paleontology, v. 87, p. 353372.Google Scholar
Blake, D.B., and Hagdorn, H., 2003, The Asteroidea (Echinodermata) of the Muschelkalk (Middle Triassic of Germany): Paläontologische Zeitschrift, v. 77, p. 2358.Google Scholar
Blake, D.B., and Hotchkiss, F.H.C., 2004, Recognition of the asteroid (Echinodermata) crown group: Implications of the ventral skeleton: Journal of Paleontology, v. 78, p. 359370.Google Scholar
Blake, D.B., and Jagt, J.W.M., 2005, New latest Cretaceous and earliest Paleogene asteroids (Echinodermata) from the Netherlands and Denmark and their palaeobiological significance: Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, v. 75, p. 183200.Google Scholar
Blake, D.B., and Reboul, R., 2011, A new asteroid (Echinodermata) faunule from the Early Cretaceous (Barremian) of Morocco: Journal of Paleontology, v. 85, p. 10211034.Google Scholar
Blake, D.B., and Reid, R. III, 1998, Some Albian (Cretaceous) asteroids (Echinodermata) from Texas and their paleobiological implications: Journal of Paleontology, v. 72, p. 512532.CrossRefGoogle Scholar
Blake, D.B., Donovan, S.K., Mah, C.L., and Dixon, H.L., 2015, Asteroid (Echinodermata) skeletal elements from upper Oligocene deposits of Jamaica and Antigua: Geological Magazine, v. 152, p. 10431056. doi: 10.1017/S0016756815000096.Google Scholar
Branson, E.B., 1947, Correction of the horizon of Pentagonaster browni Weller: Journal of Paleontology, v. 21, p. 590591.Google Scholar
Burns, C., and Mooi, R., 2003, An overview of Eocene-Oligocene echinoderm faunas of the Pacific Northwest, in Prothero, D.R., Ivany, L.C., and Nesbitt, E.A., eds., From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition: New York, Columbia University Press, p. 88106. ISBN 0-231-12716-2.Google Scholar
Campbell, K.A., 2006, Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, p. 362407. doi: 10.1016/j.palaeo.2005.06.018.Google Scholar
Carney, R.S., 1994, Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents: Geo-Marine Letters, v. 14, p. 149159.Google Scholar
Clark, A.M., 1962, Asteroidea: B.A.N.Z. Antarctic Research Expedition, Reports, ser. B, v. 9: Adelaide, Australia, Griffin Press, 104 p.Google Scholar
Clark, A.M., and Downey, M.E., 1992, Starfishes of the Atlantic: London, Chapman and Hall, 794 p.Google Scholar
Clark, H.L., 1946, The Echinoderm Fauna of Australia: Its Composition and Origin: Washington, D.C, Carnegie Institution of Washington Publication, v. 566, 567 p.Google Scholar
Cobban, W.A., Walaszczyk, I., Obradovich, J.D., and McKinney, K.C., 2006, A USGS Zonal Table for the Upper Cretaceous Middle Cenomanian-Maastrichtian of the Western Interior of the United States Based on Ammonites, Inoceramids, and Radiometric Ages: U.S. Geological Survey Open-File Report, v. 2006-1250, 46 p.Google Scholar
Cochran, J.K., Landman, N.H., Larson, N.L., and Meehan, K.C., 2015, Geochemical evidence (C and Sr isotopes) for methane seeps as ammonite habitats in the Late Cretaceous (Campanian) Western Interior Seaway: Swiss Journal of Palaeontology, v. 134, p. 153165.Google Scholar
Eck, H., 1879, Bemerkungen zu den Mittheilungen des Herrn H. Pohlig über “Aspidura, ein mesozoisches Ophiuridengenus” und über die Lagerstätte der Ophiuren im Muschelkalk: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 31, p. 3553.Google Scholar
Enay, R., and Hess, H., 1970, Nouveaux gisements à Stelléroïdes dans le Kimméridgien supérieur (Calcaires en plaquettes) du Jura méridional — Ain, France: Eclogae Geologicae Helvetiae, v. 63, p. 10931107.Google Scholar
Fisher, W.K., 1910, New genera of starfishes: The Annals and Magazine of Natural History, v. 5, p. 171173.Google Scholar
Fisher, W.K., 1911, Asteroidea of the North Pacific and adjacent waters: Bulletin of the U.S. National Museum, v. 76, 420 p.Google Scholar
Fisher, W.K., 1916, Notes on the systematic position of certain genera and higher groups of starfishes: Proceedings of the Biological Society of Washington, v. 29, p. 16.Google Scholar
Fisher, W.K., 1919, Starfishes of the Philippine Seas and adjacent waters: Bulletin of the United States National Museum, v. 100, no. 3, 712 p.Google Scholar
Forbes, E., 1839, On the Asteriadae of the Irish Sea: Memoirs Wernerian Natural History Society of Edinburgh, v. 8, p. 113129.Google Scholar
Gage, J.D., and Tyler, P.A., 1991, Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor: Cambridge, UK, Cambridge University Press, 504 p.Google Scholar
Gale, A.S., 2011, The phylogeny of post-Palaeozoic Asteroidea (Neoasteroidea, Echinodermata): Special Papers in Palaeontology, v. 38, 112 p.Google Scholar
Gilbert, G.K., and Gulliver, F.P., 1895, Tepee Buttes: Bulletin of the Geological Society of America, v. 6, p. 333342.Google Scholar
Gill, J.R., and Cobban, W.A., 1966, The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming: U.S. Geological Survey Professional Paper, v. 393-A, 73 p.Google Scholar
Gray, J.E., 1840, A synopsis of the genera and species of the class Hypostoma (Asterias Linnaeus): The Annals and Magazine of Natural History, v. 6, p. 175–184, 275290.CrossRefGoogle Scholar
Griffitts, M.O., 1949, Zones of Pierre Formation of Colorado: American Association of Petroleum Geologists Bulletin, v. 33, p. 20112028.Google Scholar
Handle, K.C., 2014, Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota [Ph.D. dissertation]: The City University of New York, 243 p.Google Scholar
Hardy, S.M., Carr, C.M., Hardman, M., Steinke, D., Corstorphine, E., and Mah, C., 2010, Biodiversity and phylogeography of Arctic marine fauna: Insights from molecular tools: Marine Biodiversity, doi: 10.1007/s12526-010-0056-x.Google Scholar
Hendricks, J.K., Gong, J., Jones, P., Hsiung, S., Tao, K., Metz, C.L., Raymond, A., and Pope, M.C., 2011, Depositional model for the Tepee Buttes methane seeps—zoned and conical, or flat and patchy?: Geological Society of America, Abstracts with Programs, v. 43, p. 95.Google Scholar
Hess, H., 1955, Die fossilen Astropectiniden (Asteroidea): Schweizerische Paläontologische Abhandlungern, v. 71, 113 p.Google Scholar
Hess, H., 1960a, Über die Abrenzung der Astropectiniden-Gattungen Pentasteria Valette und Archastropecten Hess: Eclogae Geologicae Helvetiae, v. 53, p. 329331.Google Scholar
Hess, H., 1960b, Pentasteria (Archastropecten) procera n. sp. (Asteroidea, Astropectinidae) aus dem Bajocien von Cheltenham (England): Eclogae Geologicae Helvetiae, v. 53, p. 331334.Google Scholar
Hess, H., 1968, Ein neuer Seestern (Pentasteria longispina n. sp.) aus den Effingerschichten des Weissensteins (Kt. Solothurn): Eclogae Geologicae Helvetiae, v. 66, p. 607614.Google Scholar
Hess, H., 1970, Schlangensterne und Seesterne aus dem oberen Hauterivien “Pierre jaune” von St-Blaise bei Neuchâtel: Eclogae Geologicae Helvetiae, v. 63, p. 10691091.Google Scholar
Hess, H., 1972, Eine Echinodermen-Fauna aus dem mittleren Dogger des Aargauer Juras: Schweizerische Paläontologische Abhandlungen, v. 92, 87 p.Google Scholar
Hess, H., 1987, Neue Seesternfunde aus dem Dogger des Schweizer Juras: Eclogae Geologicae Helvetiae, v. 80, p. 907918.Google Scholar
Howe, B., 1987, Tepee Buttes: A petrological, paleontological, paleoenvironmental study of Cretaceous submarine spring deposits [master’s thesis]: Boulder, University of Colorado, 218 p.Google Scholar
Hunter, A.W., Larson, N.L., Landman, N.H., and Oji, T., 2016, Lakotacrinus brezinai n. gen. n. sp., a new stalked crinoid from cold methane seeps in the Upper Cretaceous (Campanian) Pierre Shale, South Dakota, United States: Journal of Paleontology, v. 90, p. 506524.Google Scholar
Kato, M., Oji, T., and Shirai, K., 2017, Paleoecology of Echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway: Palaios, v. 32, 218230.Google Scholar
Kauffman, E.G., Arthur, M.A., Howe, B., and Scholle, P.A., 1996, Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, U.S.A: Geology, v. 24, p. 799802.Google Scholar
Kiel, S., Wiese, F., and Titus, A., 2012, Shallow-water methane-seep faunas in the Cenomanian Western Interior Seaway: No evidence for onshore-offshore adaptations to deep-sea vents: Geology, v. 49, p. 839842.Google Scholar
Landman, N.H., Cochran, J.K., Larson, N.L., Brezina, J., Garb, M.P., and Harries, P.J., 2012, Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material: Geology, v. 40, p. 507510. doi: 10.1130/G32782.1.Google Scholar
Larson, N.L., Jorgensen, S.D., Farrar, R.A., and Larson, P.L., 1997, Ammonites and other Cephalopods of the Pierre Seaway: Tucson, Arizona, Geoscience Press, 144 p.Google Scholar
Larson, N.L., Brezina, J., Landman, N.H., Garb, M.P., and Handle, K.C., 2014, Hydrocarbon seeps: Unique habitats that preserved the diversity of fauna in the Late Cretaceous Western Interior Seaway: academia.edu/4641897/Hydrocarb on_seeps_unique_habitats.Google Scholar
Levin, L.A., 2005, Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes, in Gibson, R.N., Atkinson, R.J.A., and Gordon, J.D.M., eds., Oceanography and Marine Biology, Annual Review, v. 43: Boca Raton, Florida, CRC Press, p. 146.Google Scholar
MacAvoy, S.E., Carney, R.S., Fisher, C.R., and Macko, S.A., 2002, Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico: Marine Ecology Progress Series, v. 225, p. 6578.Google Scholar
Mah, C.L., and Foltz, D.L., 2011a, Molecular phylogeny of the Valvatacea (Asteroidea: Echinodermata): Zoological Journal of the Linnean Society, v. 161, p. 769788.Google Scholar
Mah, C.L., and Foltz, D., 2011b, Molecular phylogeny of the Forcipulatacea (Asteroidea: Echinodermata): Systematics and biogeography: Zoological Journal of the Linnean Society, v. 162, p. 646660.Google Scholar
Mah, C., Linse, K., Copley, J., Marsh, L., Rogers, A., Clague, D., and Foltz, D., 2015, Description of a new family, new genus, and two new species of deep-sea Forcipulatacea (Asteroidea), including the first known sea star from hydrothermal vent habitats: Zoological Journal of the Linnean Society, v. 174, p. 93113. doi: 10.1111/zoj.12229.Google Scholar
Meehan, K.C., and Landman, N.H., 2016, Faunal associations in cold-methane seep deposits from the Upper Cretaceous Pierre Shale, South Dakota: Palaios, v. 31, p. 291301.Google Scholar
Meek, F.B., and Hayden., F.V., 1856, Descriptions of new species of Gasteropoda and Cephalopoda from the Cretaceous formations of Nebraska Territory: Proceedings of the Academy of Natural Sciences, Philadelphia, v. 8, p. 63126.Google Scholar
Metz, C.L., 2008, The paleobiogeography of the Late Cretaceous Western Interior Basin Tepee Butte Mounds (hydrocarbon seeps) of North America and possible tectonic factors controlling their distribution: Geological Society of America, Abstracts with Programs, v. 40, p. 250251.Google Scholar
Metz, C.L., 2010, Tectonic controls on the genesis and distribution of Late Cretaceous, Western Interior Basin hydrocarbon seep mounds (Tepee Buttes) of North America: The Journal of Geology, v. 118, p. 201213.Google Scholar
Oguro, C., Komatsu, M., and Kano, Y.T., 1976, Development and metamorphosis of the sea-star Astropecten scoparius Valenciennes: Biological Bulletin, v. 151, p. 560573.Google Scholar
Paull, C.K., Hecker, B., Commeau, R., Freeman-Lynde, R.P., Newmann, C., Corso, W.P., Golubic, S., Hook, J.E., Sikes, E., and Curray, J., 1984, Biological communities at the Florida Escarpment resemble hydrothermal vent taxa: Science, v. 226, p. 964967.CrossRefGoogle ScholarPubMed
Perrier, E., 1881, Description sommaire des espèces nouvelles d’Astéries: Bulletin of the Museum of Comparative Zoology: Harvard University, v. 9, p. 131.Google Scholar
Perrier, E., 1884, Mémoire sur les Étoiles de Mer recueillis dans la Mer des Antilles et le Golfe de Mexique: Nouvelles Archives du Muséum d’Histoire Naturelle, Paris, v. 6, p. 127276.Google Scholar
Perrier, E., 1891, Stellerides nouveaux provenant des campagnes du yacht l’Hirondelle : Mémoires de la Société Zoologique de France, v. 4, p 258271.Google Scholar
Rao, V.R., 1957, A new Middle Jurassic asteroid from Pachham Island, Cutch: India, Journal of the Palaeontological Society of India, v. 2, p. 213217.Google Scholar
Santos, R., Haesaerts, D., Jangoux, M., and Flammang, P., 2005, Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea): Journal of Morphology, v. 263, p. 259269.Google Scholar
Shapiro, R., and Fricke, H., 2002, Tepee Buttes: Fossilized methane-seep ecosystems: Field Guides, v. 3, p. 94101. doi: 10.1130/0-8137-0003-5.94.Google Scholar
Sladen, W.P., 1882, Description of Mimaster, a new genus of Asteroidea from the Faeroe Channel: Proceedings of the Royal Society of Edinburgh, v. 30, p. 579584.Google Scholar
Sladen, W.P., 1889, Report on the Asteroidea: Report on the scientific results of the voyage of H.M.S. Challenger: Zoology, v. 30, 894 p.Google Scholar
Smith, E.A., 1876, Descriptions of species of Asteriidae and Ophiuridae from Kerguelen Island: The Annals and Magazine of Natural History, v. 17, p. 105113.CrossRefGoogle Scholar
Spencer, W.K., 1907, A monograph on the British fossil Echinodermata from the Cretaceous formations, the Asteroidea and Ophiuroidea: Palaeontographical Society of London Monograph, v. 2, no. 4, p. 91132.Google Scholar
Spencer, W.K., and Wright, C.W., 1966, Asterozoans, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3(1): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas, p U4U107.Google Scholar
Stimpson, W., 1857, On the Crustacea and Echinodermata of the Pacific shores of North America: Boston: Journal of Natural History, v. 6, p. 444532.Google Scholar
Valette, A., 1929, Note sur quelques stelléridés jurassiques du Laboratoire de Faculté des Sciences de Lyon: Travaux du Laboratoire de Géologie de la Faculté des Sciences de Lyon, fasc, v. 16, no. 13, 39 p.Google Scholar
Verrill, A.E., 1899, Revision of certain genera and species of starfishes, with descriptions of new forms: Transactions of the Connecticut Academy of Arts and Sciences, v. 10, no. 1, p. 145234.Google Scholar
Vickery, M.S., and McClintock, J.B., 2000, Comparative morphology of tube feet among the Asteroidea: Phylogenetic implications: American Zoologist, v. 40, p. 355364.Google Scholar
Weller, S., 1905, A fossil starfish from the Cretaceous of Wyoming: Journal of Geology, v. 13, p. 257258.Google Scholar