Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T07:47:15.184Z Has data issue: false hasContentIssue false

New skeletal material of Andrewsiphius and Kutchicetus, two Eocene cetaceans from India

Published online by Cambridge University Press:  14 July 2015

J. G. M. Thewissen
Affiliation:
1Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown 44272,
Sunil Bajpap
Affiliation:
2Department of Earth Sciences, Indian Institute of Technology, Roorkee 247667,

Abstract

The Eocene cetacean genera Andrewsiphius and Kutchicetus are systematically revised, their anatomy described, and their phylogenetic position analyzed. Each genus contains a single species, A. sloani and K minimus, and both are known only from the middle Eocene of the Indian Subcontinent. Andrewsiphius and Kutchicetus differ in a number of respects, the most important dental difference being that P2, P3, p2, and p3 are double-rooted in Andrewsiphius and single-rooted in Kutchicetus. Lower molars are separated by diastemata in Kutchicetus, but not in Andrewsiphius. Postcranially, Andrewsiphius has caudal vertebrae that are far more robust than those of Kutchicetus.

We propose the new clade Andrewsiphiinae for these two genera, based on their unique characters: the extremely slender jaw, fused mandibular symphysis, narrow palate and rostrum, and lower molars that have a low crown with three cusps lined up rostro-caudally. A phylogenetic analysis indicates that andrewsiphiines are either a subfamily of Remingtonocetidae or an independent branch on the Eocene cetacean lineage. Interpreting conservatively, we classify them as remingtonocetids. Andrewsiphiines have a long, robust, dorso-ventrally flattened tail and short limbs, suggesting that they swam using dorsoventral undulation of the tail.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajpai, S. and Thewissen, J. G. M. 1998. Middle Eocene cetaceans from the Harudi and Subathu Formations of India, p. 213233. In Thewissen, J. G. M. (ed.), The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea. Plenum Press, New York, 477 pp.CrossRefGoogle Scholar
Bajpai, S. and Thewissen, J. G. M. 2000. A new diminuitive whale from Kachchh (Gujarat, India) and its implications for locomotor evolution of cetaceans. Current Science (New Delhi), 79:14781482.Google Scholar
Bajpai, S. and Thewissen, J. G. M. 2002. Vertebrate fauna from Panandhro Lignite field (Lower Eocene), District Kachchh, western India. Current Science (New Delhi), 82:507509.Google Scholar
Bajpai, S. and Thewissen, J. G. M. 2006. Eocene and Oligocene sirenians (Mammalia) from Kachchh, India. Journal of Vertebrate Paleontology, 26:400410.CrossRefGoogle Scholar
Biswas, S. K. 1992. Tertiary biostratigraphy of Kutch. Journal of the Palaeontological Society of India, 37:129.Google Scholar
Brisson, M. J. 1762. Regnum animale in classes IX distributum, sive synopsis methodica sistens generalem animalium distributionem in classes IX, & duarum primarum classium, quadripedum scilicet & cetaceorum, particularum divisionem in ordines, sections, genera, & species. Editio altera auctior. Theororum Haak, Leiden (Netherlands), 296 pp.Google Scholar
Buchholtz, E. A. 1998. Implications of vertebral morphology for locomotor evolution in early Cetacea, p. 325351. In Thewissen, J. G. M. (ed.), The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea. Plenum Press, New York, 477 pp.CrossRefGoogle Scholar
Buchholtz, E. A. 2001. Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). Journal of Zoology, 253:175190.CrossRefGoogle Scholar
Dehnhardt, G. and Mauck, B. 2008. Mechanoreception in secondarily aquatic vertebrates, p. 295314. In Thewissen, J. G. M. and Nummela, S. (eds.), Sensory Evolution on the Threshold, Adaptations in Secondarily Aquatic Vertebrates. University of California Press, Berkeley, 360 pp.Google Scholar
Fish, F. E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. American Zoologist, 36:628641.CrossRefGoogle Scholar
Fish, F. E. 2001. A mechanism for evolutionary transition in swimming mode by mammals, p. 261287. In Mazin, J.-M. and de Buffrénil, V. (eds.), Secondary Adaptations of Tetrapods to Life in Water. Dr. Friedrich Pfeil Verlag, Munich, 367 pp.Google Scholar
Geisler, J. 2001. New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. American Museum Novitates, 3344:153.2.0.CO;2>CrossRefGoogle Scholar
Geisler, J. and Luo, Z.-X. 1998. Relationships of Cetacea to terrestrial ungulates and the evolution of cranial vasculature in Cete, p. 163212. In Thewissen, J. G. M. (ed.), The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea. Plenum Press, New York, 477 pp.CrossRefGoogle Scholar
Geisler, J., Sanders, A. E., and Luo, Z.-X. 2005. A new protocetid whale (Cetacea: Archaeoceti) from the late middle Eocene of South Carolina. American Museum Novitates, 3480:165.CrossRefGoogle Scholar
Geisler, J. H., Theodor, J. M., Uhen, M. D., and Foss, S. E. 2007. Phylogenetic relationships of cetaceans to terrestrial artiodactyls, p. 1931. In Prothero, D. R. and Foss, S. E. (eds.), The Evolution of Artiodactyls. Johns Hopkins University Press, Baltimore.Google Scholar
Geisler, J. and Uhen, M. D. 2003. Morphological support for a close relationship between hippos and whales. Journal of Vertebrate Paleontology, 23:991996.CrossRefGoogle Scholar
Gingerich, P. D., Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology, University of Michigan, 29:291330.Google Scholar
Gingerich, P. D., Ul-Haq, M., Khan, I. H., and Zalmout, I. S. 2001a. Eocene stratigraphy and archaeocete whales (Mammalia, Cetacea) of Drug Lahar in the Eastern Sulaiman range, Balochistan (Pakistan). Contributions from the Museum of Paleontology, University of Michigan, 30:269319.Google Scholar
Gingerich, P. D., Ul-Haq, M., Zalmout, L. S., Khan, I. H., and Malkani, M. S. 2001b. Origin of whales from early artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan. Science, 293:22392242.CrossRefGoogle ScholarPubMed
Hulbert, R. C. Jr. 1998. Postcranial osteology of the North American middle Eocene protocetid Georgiacetus, p. 235267. In Thewissen, J. G. M. (ed.), The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea. Plenum Press, New York, 477 pp.CrossRefGoogle Scholar
Hulbert, R. C. Jr., Petkewich, R. M., Bishop, G. A., Burky, D., and Aleshire, D. P. 1998. A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia. Journal of Paleontology, 72:905925.CrossRefGoogle Scholar
Kumar, K. and Sahni, A. 1986. Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia, Cetacea) from Western Kutch, India. Journal of Vertebrate Paleontology, 6:326349.CrossRefGoogle Scholar
Lucas, F. A. 1900. The pelvic girdle of Zeuglodon, Basilosaurus cetoides (Owen) with notes on other portions of the skeleton. Proceedings of the U.S. National Museum, 23:327331.CrossRefGoogle Scholar
Luckett, W. P. and Hong, N. 1998. Phylogenetic relationships between the orders Artiodactyla and Cetacea: A combined assessment of morphological and molecular evidence. Journal of Mammalian Evolution, 5:127182.CrossRefGoogle Scholar
Madar, S. I. 2007. The postcranial skeleton of early Eocene pakicetid cetaceans. Journal of Paleontology, 81:176200.CrossRefGoogle Scholar
Madar, S. I., Thewissen, J. G. M., and Hussain, S. T. 2002. Additional holotype remains of Ambulocetus natans (Cetacea, Ambulocetidae) and their implications for locomotion in early whales. Journal of Vertebrate Paleontology, 22:405422.CrossRefGoogle Scholar
Mukhopadhyay, S. K. and Shome, S. 1996. Depositional environment and basin development during early Paleogene lignite deposition, western Kutch, Gujarat, India. Journal of the Geological Society of India, 47:579592.Google Scholar
Nummela, S., Hussain, S. T., and Thewissen, J. G. M. 2006. Cranial anatomy of Pakicetidae (Cetacea, Mammalia). Journal of Vertebrate Paleontology, 26:746759.CrossRefGoogle Scholar
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., and Kumar, K. 2004. Eocene evolution of whale hearing. Nature, 430:776778.CrossRefGoogle ScholarPubMed
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., and Kumar, K. 2007. Sound transmission in archaic and modern whales: Anatomical adaptations for underwater hearing. Anatomical Record, 290:716733.CrossRefGoogle ScholarPubMed
O'leary, M. A. 1998. Phylogenetic and morphometric reassessment of the dental evidence for a mesonychian and cetacean clade, p. 133162. In Thewissen, J. G. M. (ed.), The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea. Plenum Press, New York, 477 pp.CrossRefGoogle Scholar
O'leary, M. A. and Gatesy, J. 2007. Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics, 23:146.Google Scholar
O'leary, M. A. and Geisler, J. H. 1999. The position of Cetacea within Mammalia: Phylogenetic analysis of morphological data from extinct and extant taxa. Systematic Biology, 48:455490.CrossRefGoogle ScholarPubMed
Rai, J. 1997. Scanning-electron microscopic studies of the late middle Eocene (Bartonian) calcareous nannofossils from the Kutch Basin, western India. Journal of the Palaeontological Society of India, 42:147167.Google Scholar
Sahni, A. and Mishra, V. P. 1972. A new species of Protocetus (Cetacea) from the middle Eocene of Kutch, western India. Palaeontology, 15:490495.Google Scholar
Sahni, A. and Mishra, V. P. 1975. Lower Tertiary vertebrates from Western India. Palaeontological Society of India, Monograph, 3: 148.Google Scholar
Saraswati, P. K. and Banarjee, R. K. 1984. Lithostratigraphic classification of the Tertiary sequence of northwestern Kutch, p. 377390. In Badve, R. M., Bokar, V. D., Ghare, M. A., and Rajshekhar, C. S. (eds.), Proceedings of the Xth Indian Colloquium on Micropalaeontology and Stratigraphy, 1982, Pune. Marahastra Association for the Cultivation of Science, Pune.Google Scholar
Saravanan, N. 2007. Sequence-stratigraphy of vertebrate-bearing, early Tertiary strata of Gujarat, India. Unpubl. , , Roorkee, 215 pp.Google Scholar
Singh, P. and Singh, M. P. 1991. Nannofloral biostratigraphy of the late middle Eocene strata of Kachchh Region, Gujarat State, India. Geoscience Journal (Dehra Dun, India), 12:1751.Google Scholar
Swofford, D. L. 2002. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta. CD-ROM, Sinauer, Sunderland, Connecticut.Google Scholar
Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: A morphological perspective. Journal of Mammalian Evolution, 2:157184.CrossRefGoogle Scholar
Thewissen, J. G. M. and Bajpai, S. 2001a. Dental morphology of the Remingtonocetidae (Cetacea, Mammalia). Journal of Paleontology, 75:463465.2.0.CO;2>CrossRefGoogle Scholar
Thewissen, J. G. M. and Bajpai, S. 2001b. Whale origins as posterchild for macroevolution. BioScience, 5:10371049.CrossRefGoogle Scholar
Thewissen, J. G. M. and Fish, F. E. 1997. Locomotor evolution in the earliest cetaceans: Functional model, modern analogues, and paleontological evidence. Paleobiology, 23:482490.CrossRefGoogle Scholar
Thewissen, J. G. M. and Hussain, S. T. 2000. Attockicetus praecursor, a new remingtonocetid cetacean from marine Eocene sediments in Pakistan. Journal of Mammalian Evolution, 7:133146.CrossRefGoogle Scholar
Thewissen, J. G. M. and Nummela, S. 2007. Toward an integrative approach, p. 333340. In Thewissen, J. G. M. and Nummela, S. (eds.), Sensory Biology on the Threshold; Adaptations in Secondarily Aquatic Tetrapods. University of California Press, Berkeley, 360 pp.Google Scholar
Thewissen, J. G. M. and Williams, E. M. 2002. The early evolution of Cetacea (whales, dolphins, and porpoises). Annual Review of Ecology and Systematics, 33:7390.CrossRefGoogle Scholar
Thewissen, J. G. M., Roe, L. J., O'neil, J. R., Hussain, S. T., Sahni, A., and Bajpai, S. 1996. Evolution of cetacean osmoregulation. Nature, 381:379380.CrossRefGoogle Scholar
Thewissen, J. G. M., Williams, E. M., Roe, L. J., and Hussain, S. T. 2001. Skeletons of terrestrial cetaceans and the relationships of whales to artiodactyls. Nature, 413:277281.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S., and Tiwari, B. N. 2007. Whales originated from aquatic artiodactyls in the Eocene Epoch of India. Nature, 450:11901194.CrossRefGoogle ScholarPubMed
Uhen, M. D. 1998. Middle to late Eocene basilosaurines and dorudontines, p. 2961. In Thewissen, J. G. M. (ed.), The Emergence of Whales, evolutionary patterns in the origin of Cetacea. Plenum Press, New York, 477 pp.CrossRefGoogle Scholar
Uhen, M. D. 2004. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): An archaeocete from the middle to late Eocene of Egypt. Museum of Paleontology, University of Michigan, Papers on Paleontology, 34:1222.Google Scholar