Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:00:51.532Z Has data issue: false hasContentIssue false

A new, phylogenetically significant Early Ordovician asteroid (Echinodermata)

Published online by Cambridge University Press:  14 July 2015

Daniel B. Blake
Affiliation:
Department of Geology, University of Illinois, Urbana 61801,
Thomas E. Guensburg
Affiliation:
Physical Sciences Division, Rock Valley College, Rockford, Illinois 61114,
James Sprinkle
Affiliation:
Department of Geological Sciences, University of Texas, Austin 78712,
Colin Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville 37996,

Abstract

A new monospecific family of asteroids (Echinodermata) is based on Eukrinaster ibexensis n. gen. and sp. from the Lower Ordovician of Utah and Nevada. Eukrinaster, Arenig in age, is one of the earliest of known asterozoans. The new, relatively well-preserved fossils yield important information on character state distribution that will be useful for the interpretation of phylogenetic relationships among the three asterozoan classes, the Somasteroidea, Ophiufoidea, and Asteroidea. In addition, overall form is suggestive of certain living asteroids: to the extent that form equates with function, similarities suggest ecologic parallels in these only distantly related asteroids inhabiting ecologically distinct worlds.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baily, W. H. 1878. p. xv, 21, 26. In Kinahan, G. H., Manual of the Geology of Ireland. C. Kegan Paul, London, 426 p.Google Scholar
Blainville, H. M. de. 1830. Zoophytes. Dictionaries des Sciences Naturelles. F. G. Larval, Strasbourg, 60 p.Google Scholar
Blake, D. B. 1998. Morphological characters of early asteroids and ophiuroids, p. 57. In Mooi, R. J. and Telford, M. L. (eds.), Echinoderms, San Francisco; A. A. Balkema, Rotterdam.Google Scholar
Blake, D. B. and Elliott, D. R. 2003. Ossicular homologies, systematics, and phylogenetic implications of certain North American Carboniferous asteroids. Journal of Paleontology, 77:476489.2.0.CO;2>CrossRefGoogle Scholar
Blake, D. B. and Guensburg, T. E. 2005. Implications of a new Early Ordovician asteroid (Echinodermata) for the phylogeny of Asterozoans. Journal of Paleontology, 79:395399.2.0.CO;2>CrossRefGoogle Scholar
Blake, D. B. and Hagdorn, H. 2003. The Asteroidea (Echinodermata) of the Muschelkalk (Triassic of Germany). Paläontologische Zeitschrift, 77:137.CrossRefGoogle Scholar
Blake, D. B. and Hotchkiss, F. H. C. 2004. Recognition of the asteroid (Echinodermata) crown group: Implications of the ventral skeleton. Journal of Paleontology, 78:359370.2.0.CO;2>CrossRefGoogle Scholar
Fell, H. B. 1963. The phylogeny of sea-stars. Philosophical Transactions of the Royal Society, London, series B, 246:386435.Google Scholar
Forbes, E. 1841. A History of British Starfish and Other Animals of the Class Echinodermata. John Van Voorst, London, 267 p.CrossRefGoogle Scholar
Gordon, I. 1929. Skeletal development in Arbacia, Echinarachnius and Leptasterias. Philosophical Transactions of the Royal Society, London, series B, 217:289334.Google Scholar
Gregory, J. W. 1900. The Eleutherozoa-Stelleroidea, p. 237281. In Lankester, E. R. (ed.), A Treatise on Zoology. Pt. 3. The Echinoderma. Adam & Charles Black, London, 344 p.Google Scholar
Hintze, L. F. 1973. Lower and Middle Ordovician stratigraphic sections in the Ibex area, Millard County, Utah. Brigham Young University Geology Studies, 20:336.Google Scholar
Kesling, R. V. 1969. Three Permian starfish from Western Australia and their bearing on revision of the Asteroidea. Contributions from the Museum of Paleontology, University of Michigan, 22:361376.Google Scholar
Lamarck, J. B. P. A. de. 1816. Stellerides. Histoire Naturelle des Animaux Sans Vertebres (edition 1.2); Paris, p. 522568.Google Scholar
Mooi, R. and David, B. 2000. What a new model of skeletal homologies tells us about asteroid evolution. American Zoologist, 40:326339.Google Scholar
Nelson, A. J. 1992. Intercontinental correlation of the Arenigian (Early Ordovician) based on sewuence and ecostratigraphy, p. 367379. In Webby, B. D. and Laurie, J. R. (eds.), Global Perspectives on Ordovician Geology. A. A. Balkema, Rotterdam.Google Scholar
Pearse, J. S. 1965. Reproductive periodicities in several contrasting populations of Odontaster validus Koehler, a common antarctic asteroid. Antarctic Research Series, 5:3970.Google Scholar
Perrier, E. 1884. Mémoire sur les étoiles de mer recueillis dans la Mer des Antilles et le Golfe de Mexique. Nouvelles Archives du Museum d'Histoire Naturelle, Paris, 6:127276.Google Scholar
Ross, R. J. Jr., Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian, lowermost series in the North American Ordovician, p. 150. In Taylor, M. E., (ed.), Early Paleozoic biochronology of the Great Basin, western United States. U.S. Geological Survey Professional Paper, 1579.Google Scholar
Schöndorf, F. 1910. Palaeozoische Seesterne Deutschlands. II. Die Aspidosomatiden des deutschen Unterdevon. Palaeontographica, 57:163.Google Scholar
Schuchert, C. 1914. Fossilium Catalogus, I: Animalia, pars 3, Stelleroidea Palaeozoica. W. Junk, Berlin, 53 p.Google Scholar
Schuchert, C. 1915. Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea. Bulletin of the U.S. National Museum, 88, 312 p.Google Scholar
Shackleton, J. D. 2005. Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms. Journal of Systematic Palaeontology, 3:29114.CrossRefGoogle Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Spencer, W. K. 1914-1940. British Palaeozoic Asterozoa. Pt. 1-10. Palaeontographical Society of London Monograph, 540 p.Google Scholar
Spencer, W. K. 1919. British Palaeozoic Asterozoa. Pt. 4. Palaeontographical Society of London Monograph, p. 169196.Google Scholar
Spencer, W. K. 1951. Early Palaeozoic starfishes. Philosophical Transactions of the Royal Society, London, series B, 235:87129.Google Scholar
Spencer, W. K. and Wright, C. W. 1966. Asterozoans, p. U4U107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. U. Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sprinkle, J. and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic evolutionary fauna: the role of substrates. Palaios, 10:437453.CrossRefGoogle Scholar
Stürtz, B. 1886. Beitrag zur Kenntnis palaeozoischer Seesterne. Palaeontographica, 32:8598.Google Scholar
Viguier, C. 1878. Classification des Stellérides. Comptes Rendus Academie Sciences, Paris, 84:681683.Google Scholar
Zittel, K. A. 1895. Grundzüge der Palaeontologie (Palaeozoologie). R. Oldenbourg, Munich, 971 p.Google Scholar