Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T12:25:13.442Z Has data issue: false hasContentIssue false

New long-stemmed eocrinoid from the Furongian Point Peak Shale Member of the Wilberns Formation, central Texas

Published online by Cambridge University Press:  09 March 2015

Samuel Zamora
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20013-7012, USA, Instituto Geológico y Minero de España, C/Manuel Lasala, 44, 9ºB, 50006, Zaragoza, Spain 〈[email protected]
Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA; 〈[email protected]
James Sprinkle
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin TX, 78712-0254, USA; 〈[email protected]

Abstract

Llanocystis wilbernsensis n. gen. n. sp. (Eocrinoidea, Echinodermata) is described based on three specimens from the Furongian Point Peak Shale Member of the Wilberns Formation in central Texas. It displays a unique morphology including a very long stem constructed with holomeric columnals, few feeding appendages, and a polyplated theca. The specimens occur in an intraformational conglomerate deposited in a proximal carbonate platform environment and represent an example of the poorly documented “pelmatozoan” radiation that occurred in proximal facies by the end of the Cambrian.

Type
Articles
Copyright
Copyright © 2015, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahr, W.M., 1971, Paleoenvironment, algal structures, and fossil algae in the Upper Cambrian of Central Texas: Journal of Sedimentary Petrology, v. 41, p. 205216.Google Scholar
Barnes, V.E., and Bell, W.C., 1977, The Moore Hollow Group of Central Texas: Bureau of Economic Geology, Report of Investigations No. 88, p. 1169.Google Scholar
Brett, C.E., Liddell, W.D., and Derstler, K.L., 1983, Late Cambrian hard substrate communities from Montana/Wyoming: The oldest known hardground encrusters: Lethaia, v. 16, p. 281289, doi: 10.1111/j.1502-3931.1983.tb02010.x.Google Scholar
Bridge, J., Barnes, V.E., and Cloud, P.E., 1947, Stratigraphy of the Upper Cambrian, Llano Uplift, Texas: Geological Society of America Bulletin, v. 58, p. 109124, doi: 10.1130/0016-7606(1947)58[109:SOTUCL]2.0.CO;2.Google Scholar
Dzik, J., and Orłowski, S., 1993, The Late Cambrian eocrinoid Cambrocrinus: Acta Palaeontologica Polonica, v. 38, p. 2134.Google Scholar
Jaekel, O., 1918, Phylogenie und System der Pelmatozoen: Paläontologische Zeitschrift, v. 3, p. 1128.Google Scholar
Jell, P.A., Burrett, C.F., and Banks, M.R., 1985, Cambrian and Ordovician echinoderms from eastern Australia: Alcheringa, v. 9, p. 183208.Google Scholar
Kruse, P.D., and Zhuravlev, A.Y., 2008, Middle-Late Cambrian Rankenella-Girvanella reefs of the Mila Formation, northern Iran: Canadian Journal of Earth Sciences, v. 45, p. 619639, doi: 10.1139/E08-016.Google Scholar
Longacre, S.A., 1970, Trilobites of the Upper Cambrian Ptychaspid Biomere Wilberns Formation, Central Texas: Paleontological Society Memoir, v. 4, p. 170.Google Scholar
Ludvigsen, R., and Westrop, S.R., 1985, Three new Upper Cambrian stages for North America: Geology, v. 13, p. 139143, doi: 10.1130/0091-7613(1985)13<139:TNUCSF>2.0.CO;2..Google Scholar
Peng, S., Babcock, L.E., and Cooper, R.A., 2012, Chapter 19 - The Cambrian Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G.M., eds., The Geologic Time Scale 2012, v. 2, Boston, Elsevier, p. 437488, doi:10.1016/B978-0-444-59425-9.00019-6.Google Scholar
Rigby, J.K., 1975, Some unusual hexactinellid sponge spicules from the Cambrian Wilberns Formation of Texas: Journal of Paleontology, v. 49, p. 412415.Google Scholar
Spincer, B.R., 1996, Paleoecology of some Upper Cambrian microbial-sponge-eocrinoid reefs, central Texas, in Repetski, J.E., ed., Sixth North American Paleontological Convention Abstracts of Papers: Paleontological Society Special Publication No. 8, p. 367.CrossRefGoogle Scholar
Sprinkle, J., 1973, Morphology and Evolution of Blastozoan Echinoderms: Harvard University Museum of Comparative Zoology, Special Publication, 283 p.Google Scholar
Sprinkle, J., and Gahn, F.J., 2007, New eocrinoids from the Lower Ordovician Garden City Formation, northeastern Utah and southeastern Idaho: Geological Society of America Abstracts with Programs, v. 39, no. 6, p. 74.Google Scholar
Sprinkle, J., and Guensburg, T.E., 1997, Early radiation of echinoderms, in Waters J.A., and Maples, C.G., eds., Geobiology of Echinoderms: Paleontological Society Papers, v. 3, p. 205224.Google Scholar
Stinchcomb, B.L., 2007, World’s Oldest Fossils: Atglen, PA, Schiffer Publishing Ltd, 160 p.Google Scholar
Sumrall, C.D., 2010, A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms, in Harris, L.G., Böttger, S.A., Walker, C.W., and Lesser, M.P., eds., Echinoderms: Proceedings of the 12th International Echinoderm Conference, Balkema, London, CRC Press, p. 269276.Google Scholar
Sumrall, C.D., and Waters, J.A., 2012, Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: Steps toward echinoderm phylogenetic reconstruction in derived blastozoa: Journal of Paleontology, v. 86, p. 956972, doi: 10.1666/12-029R.1.Google Scholar
Sumrall, C.D., and Wray, G.A., 2007, Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms: Paleobiology, v. 33, p. 149163, doi: 10.1666/06053.1.Google Scholar
Sumrall, C.D., Sprinkle, J., and Guensburg, T.E., 1997, Systematics and paleoecology of Late Cambrian echinoderms from the western United States: Journal of Paleontology, v. 71, p. 10911109.Google Scholar
Ubaghs, G., 1998, Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire: Geobios, v. 31, p. 809829.Google Scholar
Ulrich, E.O., 1929, Trachelocrinus, a new genus of Upper Cambrian crinoids: Journal of the Washington Academy of Sciences, v. 19, no. 3, p. 6366.Google Scholar
Zamora, S., 2012, The first Furongian (late Cambrian) echinoderm from the British Isles: Geological Magazine, v. 149, p. 940943, doi: 10.1017/S0016756812000350.Google Scholar
Zamora, S., Álvaro, J.J., and Vizcaïno, D., 2009, Pelmatozoan echinoderms from the Cambrian–Ordovician transition of the Iberian Chains (NE Spain): early diversification of anchoring strategies: Swiss Journal of Geosciences, v. 102, p. 4355, doi: 10.1007/s00015-009-1314-4.Google Scholar
Zamora, S., Clausen, S., Álvaro, J.J., and Smith, A.B., 2010, Pelmatozoan echinoderms as colonizers of carbonate firmgrounds in mid-Cambrian high energy environments: Palaios, v. 25, p. 764768, doi: 10.2110/palo.2010.p10-052r.Google Scholar
Zamora, S., Lefebvre, B., Álvaro, J.J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J-P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C.D., Vizcaïno, D., and Smith, A.B., 2013, Chapter 13 Cambrian echinoderm diversity and palaeobiogeography, in Harper, D.A.T. & Servais, T. (eds.) Early Palaeozoic Biogeography and Palaeogeography. Geological Socity of London, Memoirs, 38, p. 157171.Google Scholar
Zhao, Y.L., Parsley, R.D., and Peng, J., 2008, Basal Middle Cambrian short-stalked eocrinoids from the Kaili Biota: Guizhou Province, China: Journal of Paleontology, v. 82, p. 415422, doi: 10.1666/06-041.1.CrossRefGoogle Scholar