Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:58:49.429Z Has data issue: false hasContentIssue false

New Late Miocene Dromomerycine Artiodactyl from the Amazon Basin: Implications for Interchange Dynamics

Published online by Cambridge University Press:  15 October 2015

Donald R. Prothero
Affiliation:
Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA,
Kenneth E. Campbell Jr.
Affiliation:
Vertebrate Zoology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA,
Brian L. Beatty
Affiliation:
New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA, Virginia Museum of Natural History, Martinsville, VA 24112, USA
Carl D. Frailey
Affiliation:
Department of Science, Johnson County Community College, Overland Park, KS 66210, USA

Abstract

A new dromomerycine palaeomerycid artiodactyl, Surameryx acrensis new genus new species, from upper Miocene deposits of the Amazon Basin documents the first and only known occurrence of this Northern Hemisphere group in South America. Osteological characters place the new taxon among the earliest known dromomerycine artiodactyls, most similar to Barbouromeryx trigonocorneus, which lived in North America during the early to middle Miocene, 20–16 Ma. Although it has long been assumed that the Great American Biotic Interchange (GABI) began with the closure of the Isthmus of Panama in the late Pliocene, or ca. 3.0–2.5 Ma, the presence of this North American immigrant in Amazonia is further evidence that terrestrial connections between North America and South America through Panama existed as early as the early late Miocene, or ca. 9.5 Ma. This early interchange date was previously indicated by approximately coeval specimens of proboscideans, peccaries, and tapirs in South America and ground sloths in North America. Although palaeomerycids apparently never flourished in South America, proboscideans thrived there until the end of the Pleistocene, and peccaries and tapirs diversified and still live there today.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbour, H. and Schultz, C. B. 1934. A new antilocaprid and a new cervid from the late Tertiary of Nebraska. American Museum Novitates, 734:14.Google Scholar
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., and Lea, D. W. 2005. Final closure of Panama and the onset of Northern Hemisphere glaciation. Earth and Planetary Sciences Letters, 237:3344.CrossRefGoogle Scholar
Beatty, B. L. 2010. A new aletomerycine (Artiodactyla, Palaeomerycidae) from the early Miocene of Florida. Journal of Vertebrate Paleontology, 30:613617.CrossRefGoogle Scholar
Bermingham, E. and Martin, A. P. 1998. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Molecular Ecology, 7:499517.CrossRefGoogle ScholarPubMed
Campbell, K. E. Jr. In press. The Great American Faunal Interchange: the first phase, p. 0000. In Rosenberger, A. L. and Tejedor, M. F. (eds.), Origins and Evolution of Cenozoic South American Mammals. Springer, New York.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Arellano, L. J. 1985. The geology of the Rio Beni: further evidence for Holocene flooding in Amazonia. Contributions in Science, Natural History Museum of Los Angeles County, 364:118.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Romero-Pittman, L. 2000. The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the Great American Faunal Interchange. Instituto de Geológico Minero y Metalúrgico, Serie D: Estudios Regionales, Boletín, 23:1152.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Romero-Pittman, L. 2006. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239:166219.CrossRefGoogle Scholar
Campbell, K. E. Jr., Heizler, M., Frailey, C. D., Romero-Pittman, L., and Prothero, D. R. 2001. Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin. Geology 29:595598.2.0.CO;2>CrossRefGoogle Scholar
Campbell, K. E. Jr., Prothero, D. R., Romero-Pittman, L., Hertel, F., and Rivera, N. 2010. Amazonian magnetostratigraphy: dating the first pulse of the Great American Faunal Interchange. Journal of South American Earth Sciences, 29:619626.CrossRefGoogle Scholar
Carranza-Castañeda, O. and Miller, W. E. 2004. Late Tertiary terrestrial mammals from Central Mexico and their relationship to South American dispersants. Revista Brasileira de Paleontologia, 7:249261.CrossRefGoogle Scholar
Cope, E. D. 1873. On Menotherium lemurinum, Hypisodus minimus, Hypertragulus calcaratus, Hypertragulus tricostatus, Protohippus, and Procamelus occidentalis . Proceedings of the Philadelphia Academy of Natural Sciences, 25:410420.Google Scholar
Duarte, J. M. B., Gonzalez, S., and Maldonado, J. E. 2008. The surprising evolutionary history of South American deer. Molecular Phylogeny and Evolution, 49:1722.CrossRefGoogle ScholarPubMed
Filhol, H. 1876. Recherches sur le phosphorites du Quercy etude des fossils qu'on y rencontre et spécialement des mammifères, Annales des sciences géologiques, 7:1220.Google Scholar
Frailey, C. D. 1986. Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Rio Acre region, western Amazonia. Contributions in Science, Natural History Museum of Los Angeles County, 374:146.Google Scholar
Frailey, C. D. and Campbell, K. E. Jr. 2012. Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon Basin. Journal of Paleontology, 86:852877.CrossRefGoogle Scholar
Frank, M., Reynolds, B. C., and O'Nions, R. K. 1999. Nd and Pb isotopes in Atlantic and Pacific water masses before and after closure of the Panama gateway. Geology, 27:11471150.2.3.CO;2>CrossRefGoogle Scholar
Frick, C. 1937. Horned ruminants of North America. Bulletin of the American Museum of Natural History, 69:1669.Google Scholar
Fritz, U., Stuckas, H., Vargas-Ramirez, M., Hundsdörfer, A. K., Maran, J., and Packert, M. 2012. Molecular phylogeny of Central and South American slider turtles: implications for biogeography and systematics (Testudines: Emydidae: Trachemys). Journal of Zoological Systematics and Evolutionary Research, 50:125136.CrossRefGoogle Scholar
Galusha, T. 1975. Stratigraphy of the Box Butte Formation, Nebraska. Bulletin of the American Museum of Natural History, 156:168.Google Scholar
Guerrero, J. 1997. Stratigraphy, sedimentary environments, and the Miocene uplift of the Colombian Andes, p. 1543. In Kay, R. F., Madden, R. H., Cifelli, R. L., and Flynn, J. J. (eds.), Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington.Google Scholar
Haug, G. H. and Tiedemann, R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393:673676.CrossRefGoogle Scholar
Head, J. J., Rincon, A. F., Suarez, C., Montes, C., and Jaramillo, C. 2012. Fossil evidence for earliest Neogene American faunal interchange: Boa (Serpentes, Boinae) from the early Miocene of Panama. Journal of Vertebrate Paleontology, 32:1,3281,334.CrossRefGoogle Scholar
Honey, J., Harrison, J. A., Prothero, D. R., and Stevens, M. S. 1998. Camelidae, p. 439462. In Janis, C., Scott, K. M., and Jacobs, L. (eds.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge.Google Scholar
Hoorn, C., et al. (17 additional authors). 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330:927931.CrossRefGoogle ScholarPubMed
Janis, C. and K. M. Scott.1987. The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. American Museum Novitates, 2893:185.Google Scholar
Kay, R. F. and Cozzuol, M. A. 2006. New platyrrhine monkeys from the Solimões Formation (late Miocene, Acre State, Brazil). Journal of Human Evolution, 50:673686.CrossRefGoogle ScholarPubMed
Kirby, M. X., Jones, D. J., and MacFadden, B. J. 2008. Lower Miocene stratigraphy along the Panama Canal and its bearing on the Central American Peninsula. PLoS One 3(7)e2791. doi:10.1371/journal.pone.0002791.CrossRefGoogle ScholarPubMed
Latrubesse, E. M., Cozzuol, M., Rigsby, C., Silva, S., Absy, M. L., and Jaramillo, C. 2010. The late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth Sciences Reviews, 99:99124.CrossRefGoogle Scholar
Lessios, H. A. 2008. The Great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annual Reviews of Ecology, Evolution, and Systematics, 39:6391.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema Naturae. 1. Regnum animale . Editio decimal, Stockholm, Laurentii Salvii.Google Scholar
Lull, R. S. 1920. New Tertiary Artiodactyls. American Journal of Science, 200:83130.CrossRefGoogle Scholar
Lydekker, R. 1883. Indian Tertiary and post-Tertiary vertebrata. Siwalik selenodont Suina, etc. Geological Survey of India Memoirs, Palaeontologia Indica, 10:142177.Google Scholar
MacFadden, B. J. 2006. North American Miocene land mammals from Panama. Journal of Vertebrate Paleontology, 26:720734.CrossRefGoogle Scholar
Marshall, L. G., Butler, R. F., Drake, R. E., Curtis, G. H., and Tedford, R. H. 1979. Calibration of the Great American Interchange. Science, 204:272279.CrossRefGoogle ScholarPubMed
Matthew, W. D. and Cook, H. J. 1909. A Pliocene fauna from western Nebraska. Bulletin of the American Museum of Natural History, 26:361414.Google Scholar
Matthew, W. D. and Granger, W. 1924. New insectivores and ruminants from the Tertiary of Mongolia, with remarks on the correlation. American Museum Novitates, 105:17.Google Scholar
Métais, G. and Vislobokova, I. A. 2007. Basal ruminants, p. 227240. In Prothero, D. R. and Foss, S. E. (eds.), The Evolution of Artiodactyls. The Johns Hopkins University Press, Baltimore.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005. The Phanerozoic record of global sea-level change. Science, 310:1,2931,298.CrossRefGoogle ScholarPubMed
Molnar, P. 2008. Closing of the Central American Seaway and the Ice Ages: a critical review. Paleoceanography, 23:PA2,201.CrossRefGoogle Scholar
Montes, C., Cardona, A., McFadden, R., Moron, S. E., Silva, C. A., Restrepo-Moreno, S., Ramirez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., and Flores, J. A. 2012 a. Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Geological Society of America Bulletin, 124:780799.CrossRefGoogle Scholar
Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Moron, S., Hoyos, N., Ramirez, D. A., Jaramillo, C., and Valencia, V. 2012 b. Arc-continent collision and orocline formation: the closure of the Central American seaway. Journal of Geophysical Research, 117:B04105.CrossRefGoogle Scholar
Morgan, G. 2008. Vertebrate fauna and geochronology of the Great American Biotic Interchange in North America. New Mexico Museum of Natural History Bulletin, 44:93140.Google Scholar
Newkirk, D. R. and Martin, E. E. 2009. Circulation through the Central American Seaway during the Miocene carbonate crash. Geology, 37:8790.CrossRefGoogle Scholar
Owen, R. 1848. Description of teeth and portions of jaws of two extinct Anthracotherioid quadrupeds (Hyopotamus vectianus and Hyop. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the NW coast of the Isle of Wight: with an attempt to develop Cuvier's idea of the Classification of Pachyderms by the number of their toes. Quarterly Journal of the Geological Society of London, 4:103141.CrossRefGoogle Scholar
Prothero, D. R. 1998. Protoceratidae, p. 431438. In Janis, C. M., Scott, K. M., and Jacobs, L. L. (eds.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge.Google Scholar
Prothero, D. R. 2007. Moschidae, p. 221226. In Prothero, D. R. and Foss, S. E. (eds.), The Evolution of Artiodactyls. The Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Prothero, D. R. 2008. Systematics of the musk deer (Artiodactyla: Moschidae: Blastomerycinae) from the Miocene of North America. New Mexico Museum of Natural History Bulletin, 44:207225.Google Scholar
Prothero, D. R. and Liter, M. 2007. Palaeomerycidae, p. 248248. In Prothero, D. R. and Foss, S. E. (eds.), The Evolution of Artiodactyls. The Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Prothero, D. R. and Liter, M. 2008. Systematics of the dromomerycines and aletomerycines (Artiodactyla: Palaeomerycidae) from the Miocene and Pliocene of North America. New Mexico Museum of Natural History Bulletin, 44:273298.Google Scholar
Prothero, D. R. and Ludtke, J. 2007. Protoceratidae, p. 169176. In Prothero, D. R. and Foss, S. E. (eds.), The Evolution of Artiodactyls. The Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Quiroz, L. I. and Jaramillo, C. A. 2010. Stratigraphy and sedimentary environments of Miocene shallow to marginal marine deposits in the Urumaco Trough, Falcón Basin, Western Venezuela, p. 153172. In Sánchez-Villagra, M. R., Aguilera, O. A., and Carlini, A. A. (eds.), Urumaco and Venezuelan Paleontology. Indiana University Press, Bloomington.Google Scholar
Retallack, G. J. and Kirby, M. X. 2007. Middle Miocene global change and paleogeography of Panama. Palaios, 22:667679.CrossRefGoogle Scholar
Rincon, A. F., Bloch, J. I., Suarez, C., MacFadden, B. J., and Jaramillo, C. A. 2012. New floridatragulines (Mammalia, Camelidae) from the early Miocene Las Cascadas Formation, Panama. Journal of Vertebrate Paleontology, 32:456475.CrossRefGoogle Scholar
Romero-Pittman, L. 1996. Paleontología de Vertebrados. Instituto Geológico Minero y Metalúrgico, Carta Geológica Nacional, Boletín, Serie A, No. 81:171178.Google Scholar
Sánchez-Villagra, M. R., Aguilera, O. A., and Carlini, A. A. (eds.). 2010. Urumaco and Venezuelan Paleontology. Indiana University Press, Bloomington.Google Scholar
Sánchez-Villagra, M. R., Aguilera, O. A., Sánchez, R., and Carlini, A. A. 2010. The fossil vertebrate record of Venezuela of the last 65 million years, p. 1951. In Sánchez-Villagra, M. R., Aguilera, O. A., and Carlini, A. A. (eds.), Urumaco and Venezuelan Paleontology. Indiana University Press, Bloomington.Google Scholar
Simpson, G. G. 1932. Miocene land mammals from Florida. Florida State Geological Survey Bulletin, 10:741.Google Scholar
Simpson, G. G. 1950. History of the fauna of Latin America. American Scientist, 38:361389.Google Scholar
Simpson, G. G. 1980. Splendid Isolation: The Curious History of South American Mammals. Yale University Press, New Haven.Google Scholar
Skinner, M. F., Skinner, S. M., and Gooris, R. J. 1977. Stratigraphy and biostratigraphy of late Cenozoic deposits in central Sioux County, western Nebraska. Bulletin of the American Museum of Natural History, 158 (5):263370.Google Scholar
Skwara, T. 1988. Mammals of the Topham Local Fauna: early Miocene (Hemingfordian), Cypress Hills Formation, Saskatchewan. Natural History Museum of Saskatchewan Contributions, 9:1169.Google Scholar
Stehli, F. G. and Webb, S. D. (eds). 1985. The Great American Biotic Interchange. Plenum, New York.CrossRefGoogle Scholar
Stevens, M. S., Stevens, J. B., and Dawson, M. R. 1969. New early Miocene formation and vertebrate local fauna, Big Bend National Park, Brewster County, Texas. Pearce-Sellards Series, Texas Memorial Museum, 15:153.Google Scholar
Steinmann, M., Hungerbühler, D., Seward, D., and Winkler, W. 1999. Neogene tectonic evolution and exhumation of the southern Ecuadorian Andes; a combined stratigraphy and fission-track approach. Tectonophysics, 307:255276.CrossRefGoogle Scholar
Vislobokova, I. A. 1998. A new representative of the Hypertraguloidea (Tragulina, Ruminantia) from the Khoer-Dzan locality in Mongolia, with remarks on the relationship of the Hypertragulidae. American Museum Novitates, 3225:124.Google Scholar
Webb, S. D. 1998. Hornless ruminants, p. 463476. In Janis, C. M., Scott, K. M., and Jacobs, L. L. (eds.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge.Google Scholar
Webb, S. D. 2000. Evolutionary History of the New World Cervidae, p. 3864. In Vrba, E. S. and Schaller, G. B. (eds.), Antelopes, Deer, and Relatives: Fossil Record, Behavioral Ecology, Systematics, and Conservation. Yale University Press, New Haven.Google Scholar
Webb, S. D., Beatty, B. L., and Poinar, G. 2003. New evidence of Miocene Protoceratidae including a new species from Chiapas, Mexico. Bulletin of the American Museum of Natural History, 279:348367.2.0.CO;2>CrossRefGoogle Scholar
Webb, S. D. and Rancy, A. 1996. Quaternary Environmental history and forest diversity in the Neotropics, p. 335358. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. The University of Chicago Press, Chicago.Google Scholar
Webb, S. D. and Taylor, B. E. 1980. The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx . Bulletin of the American Museum of Natural History, 167:121157.Google Scholar
Weigt, L. A., Crawford, A. J., Rand, A. S., and Ryan, M. J. 2005. Biogeography of the túngara frog, Physalaemus pustulosus: A molecular perspective. Molecular Ecology, 14:3,8573,876.CrossRefGoogle ScholarPubMed
Wesselingh, F. 2006. Miocene long-lived Lake Pebas as a stage of mollusk radiations, with implications for landscape evolution in western Amazonia. Scripta Geologica, 133:117.Google Scholar
Whistler, D. P. 1984. An early Hemingfordian (early Miocene) vertebrate fauna from Boron, western Mojave Desert, California. Contributions in Science, Natural History Museum of Los Angeles County, 355:136.Google Scholar
Whitmore, F. C. Jr., and Stewart, R. H. 1965. Miocene mammals and Central American seaways. Science, 148:180185.CrossRefGoogle ScholarPubMed
Woodburne, M. O. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution, 17:245264.CrossRefGoogle ScholarPubMed