Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T04:02:39.793Z Has data issue: false hasContentIssue false

A new ichnospecies of Nereites from Carboniferous tidal-flat facies of eastern Kansas, USA: Implications for the Nereites-Neonereites debate

Published online by Cambridge University Press:  14 July 2015

M. Gabriela Mangano
Affiliation:
Kansas Geological Survey, 1930 Constant Ave, The University of Kansas, Campus West, Lawrence, 66047
Luis A. Buatois
Affiliation:
Kansas Geological Survey, 1930 Constant Ave, The University of Kansas, Campus West, Lawrence, 66047
Christopher G. Maples
Affiliation:
Kansas Geological Survey, 1930 Constant Ave, The University of Kansas, Campus West, Lawrence, 66047
Ronald R. West
Affiliation:
Department of Geology, Kansas State University, Manhattan, 66506,

Abstract

Predominantly horizontal, gently curved to slightly sinuous traces constituting uniserial rows of imbricated, subspherical sediment pads occur in Pennsylvanian tidal-flat facies of eastern Kansas. These traces exhibit a complex, actively filled internal structure. The presence of a median tunnel enveloped by overlapping pads of reworked sediment indicates that these biogenic structures should be included in the ichnogenus Nereites MacLeay in Murchison, 1839. A new ichnospecies, N. imbricata, is erected. Externally, Nereites imbricata differs from the other Nereites ichnospecies by the large, tightly packed, imbricated pads that commonly result in an annulated appearance on bedding-planes. Internally, obliquely arranged, arcuate laminae envelope the median tunnel and tend to follow the outline of the external semispherical pads. Additionally, the behavioral pattern reflected by N. imbricata is less specialized than that of the other Nereites ichnospecies. Eione monoliformis Tate, 1859 resembles N. imbricata in general appearence, but lack the diagnostic Nereites internal structure, and is invariably preserved as positive epireliefs. Occurrence of Nereites imbricata as both median tunnels surrounded by reworked sediment (Nereites preservation) and uniserial rows of imbricated sediment pads (Neonereites preservation) supports the notion that Neonereites Seilacher, 1960 is a preservational variant of Nereites. The ichnogenus Nereites is an eurybathic form and is a common component of Paleozoic shallow-marine facies.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

3

Present address: Instituto Superior de Correlación Geológica, Casilla de correo 1 (CC), 4000 San Miguel de Tucumán, Argentina, <[email protected]>

4

Present address: Department of Geological Sciences, Indiana University, Bloomington, 47405, <[email protected]>

References

Aceñolaza, F. G., and Durand, F. R. 1973. Trazas fósiles del basamento cristalino del Noroeste argentino. Boletín de la Asociación Geológica de Córdoba, 2:4555.Google Scholar
Archer, A.W. 1984. Preservational control of trace-fossil assemblages: Middle Mississippian carbonates of south-central Indiana. Journal of Paleontology, 58:285297.Google Scholar
Bandel, K. 1967. Trace fossils from two Upper Pennsylvanian sandstones in Kansas. University of Kansas Paleontological Contributions, 18:113.Google Scholar
Bandel, K. 1973. A new name for the ichnogenus Cylindrichnus Bandel, 1967. Journal of Paleontology, 47:1002.Google Scholar
Bensted, W. H. 1862. Notes on the geology of Maidstone. Geologist, 5:294301, 334, 378-383, 446-451, 334-341, 378-383.CrossRefGoogle Scholar
Benton, M. J. 1982. Trace fossils from Lower Palaeozoic ocean-floor sediments of the Southern Uplands of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 73:6787.Google Scholar
Borrouilh, R. 1973. Stratigraphie, sédimentologies et tectonique de l'île de Minorque et du Nord-Est de Majorque (Baleares). Unpublished Ph.D. thesis, University of Paris, 822 p.Google Scholar
Buatois, L. A., and Mangano, M. G. 1993. The ichnotaxonomic status of Plangtichnus and Treptichnus . Ichnos, 2:217224.CrossRefGoogle Scholar
Casey, R. 1961. The stratigraphical palaeontology of the Lower Greensand. Palaeontology, 3:487621.Google Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45:212246.Google Scholar
Chamberlain, C. K., and Clark, D. L. 1973. Trace fossils and conodonts as evidence for deep-water deposits in the Oquirrh Basin of central Utah. Journal of Paleontology, 47:663682.Google Scholar
Conkin, J. E., and Conklin, B. M. 1968. Scalarituba missouriensis and its stratigraphic distribution. The University of Kansas Paleontological Contributions, 31:17.Google Scholar
Crimes, T. P., and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian-Cambrian) of southwest Africa (Namibia). Journal of Paleontology, 56:890907.Google Scholar
Crimes, T. P., and McCall, G. J. H. 1995. A diverse ichnofauna from Eocene-Miocene rocks of the Makran Range (S.E. Iran). Ichnos, 3:231258.CrossRefGoogle Scholar
Cui, Z., Yu, Z., Mei, Z., and Meng, Q. 1996. Carboniferous deep-water trace fossils, sedimentary environments and paleogeography at Hetaoba in the Qinling Mountains. Geological Review, 42:116122. (In Chinese with English abstract)Google Scholar
D'Alessandro, A. 1980. Prime osservacioni sulla ichnofauna miocenica della “Formazione di Gorgolione” (Castelmezzano, Potenza). Revista Italiana di Paleontologia e Stratigrafia, 86:357398.Google Scholar
D'Alessandro, A., and Bromley, R. G. 1987. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology, 30:743763.Google Scholar
Delgado, N. 1910. Terrains Paléozoïques du Portugal. Étude sur les fossiles des schistes à Néréites de San Domingos et des schistes à Néréites et a graptolites de Barrancos. Commision du Service Géologique du Portugal, Lisbon, 68 p.Google Scholar
Devera, J. A. 1989. Ichnofossil assemblages and associated lithofacies of the lower Pennsylvanian (Caseyville and Tradewater Formations), southern Illinois, p. 5783. In Cobb, J. C. (coord.), Geology of the Lower Pennsylvanian in Kentucky, Indiana, and Illinois. Illinois Geological Survey. Illinois Basin Studies, 1.Google Scholar
Ekdale, A. A., and Lewis, D. W. 1991. Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 81:253279.CrossRefGoogle Scholar
Emmons, E. 1844. The Taconic System; Based on Observations in New York, Maine, Vermont and Rhode Island. Caroll and Cook, Albany, 68 p.Google Scholar
Fillion, D., and Pickerill, R. K. 1990. Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland. Palaeontographica Canadiana, 7:119 p.Google Scholar
Fürsich, F. T. 1974. On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils. Journal of Paleontology, 48:1128.Google Scholar
Goldring, R. 1996. The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire. Journal of the Geological Society, London, 153:255263.CrossRefGoogle Scholar
Goldring, R., Pollard, J. E., and Taylor, A. M. 1997. Naming trace fossils. Geological Magazine, 134:265268.CrossRefGoogle Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. University of Kansas Paleontological Contributions, 63:146.Google Scholar
Heckel, P. H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of midcontinent North America. Bulletin of the American Association of Petroleum Geologists, 61:10451068.Google Scholar
Heckel, P. H. 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic effects, p. 6587. In Dennison, J. M., and Ettensohn, F. R., (eds.), Tectonic and Eustatic Controls on Sedimentary Cycles. Society for Sedimentary Geology Concepts in Sedimentology and Paleontology, 4.CrossRefGoogle Scholar
Houck, K., and Lockley, M. G. 1986. A Field Guide to the Pennsylvanian Biofacies of the Minturn Formation of the Central Colorado Trough. University of Colorado at Denver Geology Department Magazine Special Issue, 2:64 p.Google Scholar
Howard, J. D. 1966. Characteristic trace fossils in Upper Cretaceous sandstones of the Book Cliffs and Wasatch Plateau, Central Utah. Utah Geological and Mineralogical Survey Coal Bulletin, 80:3553.Google Scholar
Katto, J. 1960. Some Problematica from the so-called unknown Mesozoic strata of the southern part of Shikoku, Japan. Science Reports, Tohoku University, Second Series (Geology), 4:323334.Google Scholar
Lockley, M. G., Rindsberg, A. K., and Zeiler, R. M. 1987. The paleoenvironmental significance of the nearshore Curvolithus ichnofacies. Palaios, 2:255262.CrossRefGoogle Scholar
Mángano, M. G., Buatois, L. A., Maples, C. G., and West, R. 1996. Trace fossils from an Upper Carboniferous tidal shoreline (Stull Shale Member of eastern Kansas). 30th International Geological Congress, Beijing, Abstract Volume 2:133.Google Scholar
Maples, C. G., and Suttner, L. J. 1990. Trace fossils and marinenonmarine cyclicity in the Fountain Formation (Pennsylvanian: Morrowan/Atokan) near Manitou Springs, Colorado. Journal of Paleontology, 64:859880.CrossRefGoogle Scholar
McCann, T., and Pickerill, R. K. 1988. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62:330348.CrossRefGoogle Scholar
Murchison, R. I. 1839. The Silurian System. John Murray, London, 768 p.Google Scholar
Narbonne, G. M. 1984. Trace fossils in Upper Silurian tidal flat to basin slope carbonates of Arctic Canada. Journal of Paleontology, 58:398415.Google Scholar
Orr, P. 1994. Trace fossil tiering within event beds and preservation of frozen profiles: An example from the Lower Carboniferous of Menorca. Palaios, 9:202210.CrossRefGoogle Scholar
Orr, P. 1995. A deep-marine ichnofaunal assemblage from Llandovery strata of the Welsh Basin, west Wales, U.K. Geological Magazine, 132:267285.CrossRefGoogle Scholar
Orr, P., and Pickerill, R. K. 1995. Trace fossils from Early Silurian flysch of the Waterville Formation, Maine, U.S.A. Northeastern Geology and Environmental Sciences, 17:394414.Google Scholar
Orr, P., Benton, M. J., and Trewin, N. H. 1996. Deep marine trace fossil assemblages from the Lower Carboniferous of Menorca, Balearic Islands, western Mediterranean. Geological Journal, 31:235258.3.0.CO;2-4>CrossRefGoogle Scholar
Pek, I., Zapletal, J., and Lang, V. 1978. Trace fossils from the Lower Carboniferous of Moravia. Casopis pro mineralogii a geologii, 23:255263.Google Scholar
Pemberton, S. G., Frey, R. W., and Bromley, R. G. 1988. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences, 25:866892.CrossRefGoogle Scholar
Perdigão, J. C. 1961. Nereites do Baixo Alentejo. Comunicaçoes dos Serviços Geológicos de Portugal, 45:339363.Google Scholar
Pickerill, R. K. 1981. Trace fossils in a Lower Palaeozoic submarine canyon sequence—the Siegas Formation of northwestern New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 17:3659.Google Scholar
Pickerill, R. K. 1991. The trace fossil Neonereites multiserialis Pickerill and Harland, 1988 from the Devonian Wapske Formation, northwest New Brunswick. Atlantic Geology, 27:119126.CrossRefGoogle Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons Ltd., Chichester.Google Scholar
Pickerill, R. K., and Harland, T. L. 1988. Trace fossils from Silurian slope deposits, North Greenland. Gr⊘nlands geologiske Unders⊘gelse, Rapport, 137:119133.CrossRefGoogle Scholar
Rindsberg, A. K. 1994. Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous formations. Geological Survey of Alabama, Bulletin, 158:1107.Google Scholar
Schäffer, F. X. 1928. Hormosiroidea florentina n. g., n. sp., ein fucus aus der Kreide der Umgebung von Florenz. Paläontologische Zeitschrift, 10:212215.CrossRefGoogle Scholar
Schafhäutl, K. E. 1851. Geognostiche Untersuchungen des Südbayerischen Alpengebirges. Literarisch-artistische Anstalt, München, 208 p.Google Scholar
Seilacher, A. 1960. Lebensspuren als Leitfossilien. Geologische Rundschau, 49:4150.CrossRefGoogle Scholar
Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, 5:413428.CrossRefGoogle Scholar
Seilacher, A. 1983. Upper Paleozoic trace fossils from the Gilf Kebir-Abu Ras area in southwestern Egypt. Journal of African Earth Sciences, 1:2134.CrossRefGoogle Scholar
Seilacher, A. 1986. Evolution of behavior as expressed in marine trace fossils, p. 6787. In Nitecki, M. H. and Kitchell, J. A. (eds.), Evolution of Animal Behavior. Oxford University Press, New York.Google Scholar
Seilacher, A. 1990. Paleozoic trace fossils, p. 649670. In Said, R. (ed.), The Geology of Egypt. A.A. Balkema, Rotterdam.Google Scholar
Seilacher, A., and Meischner, D. 1965. Fazies-Analyse im Palälozoikum des Oslo-Gebietes. Geologische Rundschau, 54:596619.CrossRefGoogle Scholar
Shrock, R. R. 1935. Probable worm castings (“coprolites”) in the Salem Limestone of Indiana. Proceedings of Indiana Academy of Science, 44:174175.Google Scholar
Stefani, C. de. 1885. Studi paleozoologici sulle creta superiore e media dell Ápenninisettentrionale. Atti Accademia dei Lincei, Memorie seri 4, 1:73121.Google Scholar
Tate, G. 1859. The geology of Beadnell, in the county of Northumberland, with a description of some annelids of the Carboniferous Formation. The Geologist, 182:5970.CrossRefGoogle Scholar
Teichert, C. 1941. Upper Paleozoic of western Australia: Correlation and paleogeography. Bulletin of the American Association of Petroleum Geologists, 25:371415.Google Scholar
Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15:115 p.Google Scholar
Vialov, O. S. 1979. Novie bioglifi i probliematiki iz Sriedniei Azii. Paleontologicheskiy Sbornik (New bioglyphs and problematics from Middle Asia), 16:8089.Google Scholar
Weller, S. 1899. Kinderhook faunal studies I. The fauna of the vermicular sandstone at Northview, Webster County, Missouri. Transactions of the Academy of Science of St. Louis , 9:951.Google Scholar