Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T20:26:51.260Z Has data issue: false hasContentIssue false

A new crocodylid from the middle Miocene of Kenya and the timing of crocodylian faunal change in the late Cenozoic of Africa

Published online by Cambridge University Press:  08 September 2020

Adam P. Cossette
Affiliation:
Department of Basic Sciences, NYIT College of Osteopathic Medicine – Arkansas, Jonesboro, AR72401, USA
Amanda J. Adams
Affiliation:
Department of Earth & Environmental Sciences, University of Iowa, Iowa City, IA52242, USA ,
Stephanie K. Drumheller
Affiliation:
Department of Earth & Planetary Sciences, University of Tennessee, Knoxville, TN37996USA
Jennifer H. Nestler
Affiliation:
Cherokee Nation Businesses, Homestead, FL33030USA
Brenda R. Benefit
Affiliation:
Department of Anthropology, New Mexico State University, Las Cruces, NM88003USA ,
Monte L. McCrossin
Affiliation:
Department of Anthropology, New Mexico State University, Las Cruces, NM88003USA ,
Frederick K. Manthi
Affiliation:
Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya ,
Rose Nyaboke Juma
Affiliation:
Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya ,
Christopher A. Brochu*
Affiliation:
Department of Earth & Environmental Sciences, University of Iowa, Iowa City, IA52242, USA ,
*
*Corresponding Author

Abstract

Brochuchus is a small crocodylid originally based on specimens from the early Miocene of Rusinga Island, Lake Victoria, Kenya. Here, we report occurrences of Brochuchus from several early and middle Miocene sites. Some are from the Lake Victoria region, and others are in the Lake Turkana Basin. Specimens from the middle Miocene Maboko locality form the basis of a new species, Brochuchus parvidens, which has comparatively smaller maxillary alveoli. Because of the smaller alveoli, the teeth appear to be more widely spaced in the new species. We also provide a revised diagnosis for Brochuchus and its type species, B. pigotti. A phylogenetic analysis supports a close relationship between Brochuchus and tube-snouted Euthecodon, but although relationships among crocodylids appear poorly resolved in the set of optimal trees, this is because Brochuchus and Euthecodon, along with early Miocene “Crocodylusgariepensis from the early Miocene of Namibia, jointly adopt two distinct positions—either closely related to the living sharp-nosed crocodile (Mecistops) or to a group including the living dwarf crocodiles (Osteolaemus). Character support for a close relationship with Mecistops is problematic, and we suspect a closer relationship to Osteolaemus will be recovered with improved sampling, but the results here are ambiguous. In either case, Brochuchus is more closely related to living groups not currently found in East Africa. This material helps constrain the timing of crocodylian faunal turnover in the East African Rift Valley System, with endemic lineages largely being replaced by Crocodylus in the middle or late Miocene possibly in response to regional xerification and the replacement of continuous rainforest cover with open grasslands and savannas.

UUID: http://zoobank.org/e6f0b219-5f3e-44e5-bdb9-60a4fae8d126

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmon, W.D., 2016, Studying species in the fossil record: a review and recommendations for a more unified approach, in Allmon, W.D., and Yacobucci, M.M., eds., Species and Speciation in the Fossil Record: Chicago, University of Chicago Press, p. 59120.CrossRefGoogle Scholar
Andrews, C.W., 1905, Notes on some new Crocodilia from the Eocene of Egypt: Geological Magazine (n.s.), v. 2, p. 481484.CrossRefGoogle Scholar
Andrews, P., Meyer, G.E., Pilbeam, D.R., Van Couvering, J.A., and Van Couvering, J.a.H., 1981, The Miocene fossil beds of Maboko Island, Kenya: geology, age, taphonomy and palaeontology: Journal of Human Evolution, v. 10, p. 3548.CrossRefGoogle Scholar
Anyonge, W., 1991, Fauna from a new lower Miocene locality west of Lake Turkana, Kenya: Journal of Vertebrate Paleontology, v. 11, p. 378390.CrossRefGoogle Scholar
Arney, I.D., Maclatchy, L., Benefit, B.R., McCrossin, M.L., and Kingston, J.D., 2018, Environmental change and African early to middle Miocene catarrhine evolution: American Journal of Physical Anthropology, v. 165, p. 1213.Google Scholar
Arambourg, C., 1947, Contribution a l'étude géologique et paléontologique du Bassin du Lac Rodolphe et de la Basse Vallée de l'Omo, in Arambourg, C., ed., Mission Scientifique de l'Omo 1932–1933, Tome I: Geologie–Anthropologie: Paris, Muséum National d'Histoire Naturelle, p. 231562.Google Scholar
Benefit, B.R., 1999, Victoriapithecus: the key to Old World monkey and catarrhine origins: Evolutionary Anthropology, v. 7, p. 155174.3.0.CO;2-D>CrossRefGoogle Scholar
Bennett, E.T., 1835, Crocodilus leptorhynchus: Proceedings of the Zoological Society of London, v. 3, p. 128132.Google Scholar
Bonnefille, R., 2010, Cenozoic vegetation, climate changes and hominid evolution in tropical Africa: Global and Planetary Change, v. 72, p. 390411.CrossRefGoogle Scholar
Boschetto, H.B., Brown, F.H., and Mcdougall, I., 1992, Stratigraphy of the Lothidok Range, northern Kenya, and K/Ar ages of its Miocene primates: Journal of Human Evolution, v. 22, p. 4771.CrossRefGoogle Scholar
Brochu, C.A., 1997, Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis: Systematic Biology, v. 46, p. 479522.CrossRefGoogle ScholarPubMed
Brochu, C.A., 1999, Phylogeny, systematics, and historical biogeography of Alligatoroidea: Society of Vertebrate Paleontology Memoir, v. 6, p. 9100.CrossRefGoogle Scholar
Brochu, C.A., 2000a, Borealosuchus (Crocodylia) from the Paleocene of Big Bend National Park, Texas: Journal of Paleontology, v. 74, p. 181187.CrossRefGoogle Scholar
Brochu, C.A., 2000b, Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record: Copeia, v. 2000, p. 657673.CrossRefGoogle Scholar
Brochu, C.A., 2001, Crocodylian snouts in space and time: phylogenetic approaches toward adaptive radiation: American Zoologist, v. 41, p. 564585.Google Scholar
Brochu, C.A., 2003, Phylogenetic approaches toward crocodylian history: Annual Review of Earth and Planetary Sciences, v. 31, p. 357397.CrossRefGoogle Scholar
Brochu, C.A., 2006, A new miniature horned crocodile from the Quaternary of Aldabra Atoll, western Indian Ocean: Copeia, v. 2006, p. 149158.CrossRefGoogle Scholar
Brochu, C.A., 2007, Morphology, relationships and biogeographic significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar: Zoological Journal of the Linnean Society, v. 150, p. 835863.CrossRefGoogle Scholar
Brochu, C.A., 2020, Pliocene crocodiles from Kanapoi, Turkana Basin, Kenya: Journal of Human Evolution, v. 140, p. 102410.CrossRefGoogle ScholarPubMed
Brochu, C.A., and Storrs, G.W., 2012, A giant crocodile from the Plio-Pleistocene of Kenya, the phylogenetic relationships of Neogene African crocodylines, and the antiquity of Crocodylus in Africa: Journal of Vertebrate Paleontology, v. 32, p. 587602.CrossRefGoogle Scholar
Brochu, C.A., and Sumrall, C.D., 2020, Modern cryptic species and crocodylian diversity in the fossil record: Zoological Journal of the Linnean Society, v. 189, p. 700711.CrossRefGoogle Scholar
Brochu, C.A., Njau, J.K., Blumenschine, R.J., and Densmore, L.D., 2010, A new horned crocodile from the Plio-Pleistocene hominid sites at Olduvai Gorge, Tanzania: PLoS One, v. 5, p. e9333.CrossRefGoogle ScholarPubMed
Buffetaut, E., 1979, Présence du crocodilien Euthecodon dans le Miocène inférieur d'Ombo (Golfe de Kavirondo, Kenya): Bulletin de la Societe Géologique de France, v. 21, p. 321322.CrossRefGoogle Scholar
Buffetaut, E., 1984, On the occurrence of Crocodylus pigotti in the Miocene of Saudi Arabia, with remarks on the origin of the Nile crocodile: Neues Jahrbuch für Geologie und Paleontologie Monatschefte, v. 1984, p. 513520.CrossRefGoogle Scholar
Busbey, A.B., 1994, The structural consequences of skull flattening in crocodilians., in Thomason, J.J., ed., Functional Morphology in Vertebrate Paleontology: New York, Cambridge University Press, p. 173192.Google Scholar
Clark, J.M., 1994, Patterns of evolution in Mesozoic Crocodyliformes, in Fraser, N.C., and Sues, H.-D., eds., In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods: New York, Cambridge University Press, p. 8497.Google Scholar
Conrad, J.A., Jenkins, K., Lehmann, T., Manthi, F.K., Peppe, D.J., Nightingale, S., Cossette, A., Dunsworth, H.M., Harcourt-Smith, W.E.H., and Mcnulty, K.P., 2013, New specimens of 'Crocodylus' pigotti (Crocodylidae) from Rusinga Island, Kenya, and generic reallocation of the species: Journal of Vertebrate Paleontology, v. 33, p. 629646.CrossRefGoogle Scholar
Cope, E.D., 1861, List of the Recent species of emydosaurian reptiles in the Museum of the Academy of Natural Sciences: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 12, p. 549550.Google Scholar
Cuvier, G., 1807, Sur les différentes espèces de crocodiles vivans et sur leurs caractères distinctifs: Annales du Muséum d'Histoire Naturelle de Paris, v. 10, p. 866.Google Scholar
Cuvier, G., 1824, Recherches Sur les Ossemens Fossiles, où l'On Rétablit les Caractères de Plusieurs Animaux Dont les Révolutions du Globe Ont Détruit les Espèces: Paris, G. Doufour et Ed. D'Ocagne, v. 5 (pt. 2), 547 p.Google Scholar
Delfino, M., and De Vos, J., 2010, A revision of the Dubois crocodylians, Gavialis bengawanicus and Crocodylus ossifragus, from the Pleistocene Homo erectus beds of Java: Journal of Vertebrate Paleontology, v. 30, p. 427441.CrossRefGoogle Scholar
Drumheller, S.K., and Brochu, C.A., 2016, Phylogenetic taphonomy: a statistical and phylogenetic approach for exploring taphonomic patterns in the fossil record using crocodylians: Palaios, v. 31, p. 463478.CrossRefGoogle Scholar
Drumheller, S.K., and Wilberg, E.W., 2020, A synthetic approach for assessing the interplay of form and function in the crocodyliform snout: Zoological Journal of the Linnean Society, v. 188, p. 507521.Google Scholar
Dubois, E., 1908, Das Geologische alter der Kendeng-oder Trinilfauna: Tijdschrift van het Koninklijk Nederlandsch Aardrijkskunding Genootschap, v. 25, p. 12351270.Google Scholar
Eaton, M.J., 2010, Dwarf crocodile Osteolaemus tetraspis, in Manolis, S.C., and Stevenson, C., eds., Crocodiles: Status Survey and Conservation Action Plan: Darwin, Australia, IUCN Crocodile Specialist Group, p. 127132.Google Scholar
Eaton, M.J., Martin, A., Thorbjarnarson, J., and Amato, G., 2009, Species-level diversification of African dwarf crocodiles (genus Osteolaemus): a geographic and phylogenetic perspective: Molecular Phylogenetics and Evolution, v. 50, p. 496506.CrossRefGoogle ScholarPubMed
Feakins, S.J., Levin, N.E., Liddy, H.M., Sieracki, A., Eglinton, T.I., and Bonnefille, R., 2013, Northeast African vegetation change over 12 m.y.: Geology, v. 41, p. 295298.CrossRefGoogle Scholar
Feibel, C.S., 2011, A geological history of the Turkana Basin: Evolutionary Anthropology, v. 20, p. 206216.CrossRefGoogle ScholarPubMed
Feibel, C.S., and Brown, F.H., 1991, Age of the primate-bearing deposits on Maboko Island, Kenya: Journal of Human Evolution, v. 21, p. 221225.CrossRefGoogle Scholar
Fourtau, R., 1918, Contribution à l'etude des vertebres miocènes de l'Egypte: Cairo, Egypt Survey Department, 99 p.Google Scholar
Fourtau, R., 1920, Supplément, in Fourtau, R., ed., Contribution à l'etude des vertebres miocènes de l'Egypte: Cairo, Egypt Survey Department, p. 111121.Google Scholar
Gatesy, J., Amato, G., Norell, M., Desalle, R., and Hayashi, C., 2003, Combined support for wholesale taxic atavism in gavialine crocodylians: Systematic Biology, v. 52, p. 403422.CrossRefGoogle ScholarPubMed
Geoffroy Saint-Hilaire, E., 1807, Description de deux crocodiles qui existent dans le Nil, comparés au crocodile de Saint-Domingue: Annales du Muséum d'Histoire Naturelle, v. 10, p. 6786.Google Scholar
Geraads, D., McCrossin, M.L., and Benefit, B.R., 2012, A new rhinoceros, Victoriaceros kenyensis gen. et sp. nov., and other Perissodactyla from the middle Miocene of Maboko, Kenya: Journal of Mammalian Evolution, v. 19, p. 5775.CrossRefGoogle Scholar
Gilmore, C.W., 1910, Leidyosuchus sternbergii, a new species of crocodile from the Cretaceous Beds of Wyoming: Proceedings of the United States National Museum, v. 38, p. 485502.CrossRefGoogle Scholar
Ginsburg, L., and Buffetaut, E., 1978, Euthecodon arambourgii n. sp., et l'evolution du genre Euthecodon, crocodilien du Néogène d'Afrique: Géologie Méditerranéene, v. 5, p. 291302.CrossRefGoogle Scholar
Gmelin, J., 1789, Linnei Systema Naturae: Leipzig, G. E. Beer, 1057 p.Google Scholar
Grandidier, A., and Vaillant, L., 1872, Sur le crocodile fossile d'Amboulinstatre (Madagascar): Comptes Rendus de l'Academie des Sciences de Paris, v. 75, p. 150151.Google Scholar
Gray, J.E., 1844, Catalogue of Tortoises, Crocodilians, and Amphisbaenians in the Collection of the British Museum: London, British Museum (Natural History), 80 p.Google Scholar
Groh, S.S., Upchurch, P., Barrett, P.M., and Day, J.J., 2020, The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition: Zoological Journal of the Linnean Society, v. 188, p. 473506Google Scholar
Haug, J.T., and Haug, C., 2017, Species, populations and morphotypes through time—challenges and possible concepts: Bulletin de la Societe Géologique de France, v. 188, p. 114.Google Scholar
Hekkala, E., Shirley, M.H., Amato, G., Austin, J.D., Charter, S., Thorbjarnarson, J., Vliet, K.A., Houck, M.L., Desalle, R., and Blum, M.J., 2011, An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile: Molecular Ecology, v. 20, p. 41994215.CrossRefGoogle ScholarPubMed
Hunt, G., and Rabosky, D.L., 2014, Phenotypic evolution in fossil species: pattern and process: Annual Review of Earth and Planetary Sciences, v. 42, p. 421441.CrossRefGoogle Scholar
Iijima, M., 2017, Assessment of trophic ecomorphology in non-alligatoroid crocodylians and its adaptive and taxonomic implications: Journal of Anatomy, v. 231, p. 192211.CrossRefGoogle ScholarPubMed
Jacobs, B.F., Pan, A.D., and Scotese, C.R., 2010, A review of the Cenozoic vegetation history of Africa, in Werdelin, L. and Sanders, W.J., eds., Cenozoic Mammals of Africa: Berkeley, University of California Press, p. 5772.CrossRefGoogle Scholar
Joleaud, M.L., 1920, Sur la présence d'un Gavialidé du genre Tomistoma dans le Pliocène d'eau douce de l'Ethiopie: Comptes Rendus de l'Academie des Sciences de Paris, v. 170, p. 816818.Google Scholar
Joleaud, M.L., 1930, Les crocodiliens du pliocène d'eau douce de Omo, Livre Jubilaire, Centenaire de la Société Géologique de France: Paris, Société Géologique de France, p. 411429.Google Scholar
Kofron, C.P., 1992, Status and habitats of the three African crocodiles in Liberia: Journal of Tropical Ecology, v. 8, p. 265273.CrossRefGoogle Scholar
Kotsakis, A., Delfino, M., and Piras, P., 2004, Italian Cenozoic crocodilians: taxa, timing and palaeobiogeographic implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 210, p. 6787.CrossRefGoogle Scholar
Lambe, L.M., 1907, On a new crocodilian genus and species from the Judith River Formation of Alberta: Transactions of the Royal Society of Canada, v. 4, p. 219244.Google Scholar
Laurenti, J.N., 1768, Specimen Medicum, Exhibens Synopsin Reptilium Emendatum cum Experimentatis Circa Venena et Antiodota Reptilium Austriacorum: Vienna, J. T. de Trattnern, 214 p.Google Scholar
Lee, M.S.Y., and Yates, A.M., 2018, Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record: Proceedings of the Royal Society of London B, v. 285, p. 20181071.Google ScholarPubMed
Li, Y., Wu, X.-B., Ji, X.-F., Yan, P., and Amato, G., 2007, The complete mitochondrial genome of salt-water crocodile (Crocodylus porosus) and phylogeny of crocodilians: Journal of Genetics and Genomics, v. 34, p. 119128.CrossRefGoogle ScholarPubMed
Linder, H.P., 2017, East African Cenozoic vegetation history: Evolutionary Anthropology, v. 26, p. 300312.CrossRefGoogle ScholarPubMed
Llinás Agrasar, E., 2004, Crocodile remains from the Burdigalian (lower Miocene) of Gebel Zelten (Libya): Geodiversitas, v. 26, p. 309321.Google Scholar
Maccagno, A.M., 1948, Descrizione di una nuova specie di “Crocodilus” del giacimento di Sahabi (Sirtica): Atti della Reale Accademia Nazionale dei Lincei: Memorie della Classe di Scienze fisiche, Mathematiche e Naturale, Serie 8, v. 1, p. 6396.Google Scholar
Macgregor, D., 2015, History of the development of the East African Rift System: a series of interpreted maps through time: Journal of African Earth Sciences, v. 101, p. 232252.CrossRefGoogle Scholar
Marean, C.W., Anderson, R.J., Bar-Matthews, M., Braun, K., Cawthra, H.C., Cowling, R.M., Engelbrecht, F., Esler, K.J., Fisher, E., Franklin, J., Hill, K., Janssen, M., Potts, A.J., and Zahn, R., 2015, A new research strategy for integrating studies of paleoclimate, paleoenvironment, and paleoanthropology: Evolutionary Anthropology, v. 24, p. 6272.CrossRefGoogle ScholarPubMed
Massonne, T., Vasilyan, D., Rabi, M., and Böhme, M., 2019, A new alligatoroid from the Eocene of Vietnam highlights an extinct Asian clade independent from extant Alligator sinensis: PeerJ, v. 7, p. e7562.CrossRefGoogle ScholarPubMed
Mayr, G., 2014, On the middle Miocene avifauna of Maboko Island, Kenya: Geobios, v. 47, p. 133146.CrossRefGoogle Scholar
McAliley, L.R., Willis, R.E., Ray, D.A., White, P.S., Brochu, C.A., and Densmore, L.D., 2006, Are crocodiles really monophyletic?—evidence for subdivisions from sequence and morphological data: Molecular Phylogenetics and Evolution, v. 39, p. 1632.CrossRefGoogle ScholarPubMed
McCrossin, M.L., Benefit, B.R., Gitau, S.R., Palmer, A., and Blue, K., 1998, Fossil evidence for the originas of terrestriality among Old World monkeys and apes, in Fleagle, J.G., McHenry, H.M., and Rosenberger, A.L., eds., Primate Locomotion: Recent Advances: New York, Plenum Press, p. 353376.CrossRefGoogle Scholar
Meganathan, P.R., Dubey, B., Batzer, M.A., Ray, D.A., and Haque, I., 2010, Molecular phylogenetic analyses of genus Crocodylus (Eusuchia, Crocodylia, Crocodylidae) and the taxonomic position of Crocodylus porosus: Molecular Phylogenetics and Evolution, v. 57, p. 393402.CrossRefGoogle ScholarPubMed
Meredith, R.W., Hekkala, E.R., Amato, G., and Gatesy, J., 2011, A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: evidence for a trans-Atlantic voyage from Africa to the New World: Molecular Phylogenetics and Evolution, v. 60, p. 183191.CrossRefGoogle ScholarPubMed
Milián-García, Y., Castellanos-Labarcena, J., Russello, M.A., and Amato, G., 2018, Mitogenomic investigation reveals a cryptic lineage of Crocodylus in Cuba: Bulletin of Marine Science, v. 94, p. 329343.Google Scholar
Müller, L., 1923, Crocodilus siamensis Schneid. und Crocodilus ossifragus Dubois: Palaeontologia Hungarica, v. 1, p. 109114.Google Scholar
Murray, C.M., Russo, P., Zorrilla, A., and McMahan, C.D., 2019, Divergent morphology among populations of the New Guinea crocodile, Crocodylus novaeguineae (Schmidt, 1928): diagnosis of an independent lineage and description of a new species: Copeia, v. 2019, p. 517523.CrossRefGoogle Scholar
Narváez, I., Brochu, C.A., Escaso, F., Pérez-Garcia, A., and Ortega, F., 2016, New Spanish Late Cretaceous eusuchian reveals the synchronic and sympatric presence of two allodaposuchids: Cretaceous Research, v. 65, p. 112125.CrossRefGoogle Scholar
Oaks, J.R., 2011, A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles: Evolution, v. 65, p. 32853297.CrossRefGoogle ScholarPubMed
Pickford, M., 1981, Preliminary Miocene mammalian biostratigraphy for western Kenya: Journal of Human Evolution, v. 10, p. 7397.CrossRefGoogle Scholar
Pickford, M., 1983, Sequence and environments of the lower and middle Miocene hominoids of western Kenya, in Ciochon, R.L. and Corruccini, R.S., eds., New Interpretations of Ape and Human Ancestry: New York, Plenum Press, p. 421439.CrossRefGoogle Scholar
Pickford, M., 2003, A new species of crocodile from Early and Middle Miocene deposits of the Lower Orange River Valley, Namibia, and the origins of the Nile crocodile (Crocodylus niloticus): Geological Survey of Namibia Memoir, v. 19, p. 5165.Google Scholar
Pierce, S., Angielczyk, K.D., and Rayfield, E.J., 2008, Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: a combined geometric morphometric and finite element modeling approach: Journal of Morphology, v. 269, p. 840864.CrossRefGoogle ScholarPubMed
Piras, P., and Buscalioni, A.D., 2006, Diplocynodon muelleri comb. nov., an Oligocene diplocynodontine alligatoroid from Catalonia (Ebro Basin, Lleida Province, Spain): Journal of Vertebrate Paleontology, v. 26, p. 608620.CrossRefGoogle Scholar
Piras, P., Delfino, M., Del Favero, L., and Kotsakis, T., 2007, Phylogenetic position of the crocodylian Megadontosuchus arduini and tomistomine palaeobiogeography: Acta Palaeontologica Polonica, v. 52, p. 315328.Google Scholar
Piras, P., Colangelo, P., Adams, D.C., Buscalioni, A.D., Cubo, J., Kotsakis, A., Meloro, C., and Raia, P., 2010, The Gaviais-Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships: Evolution and Development, v. 12, p. 568579.CrossRefGoogle Scholar
Pol, D., and Gasparini, Z., 2009, Skull anatomy of Dakosaurus andiniensis (Thalattosuchia: Crocodylomorpha) and the phylogenetic position of Thalattosuchia: Journal of Systematic Palaeontology, v. 7, p. 163197.CrossRefGoogle Scholar
Polly, P.D., 1997, Ancestry and species definition in paleontology: a stratocladistic analysis of Paleocene–Eocene Viverravidae (Mammalia, Carnivora) from Wyoming: Contributions from the Museum of Geology, University of Michigan, v. 30, p. 153.Google Scholar
Retallack, G.J., Wynn, J.G., Benefit, B.R., and McCrossin, M.L., 2002, Paleosols and paleoenvironments of the middle MIocene, Maboko Formation, Kenya: Journal of Human Evolution, v. 42, p. 659703.CrossRefGoogle ScholarPubMed
Riley, J., and Huchzermeyer, F.W., 1999, African dwarf crocodiles in the Likouala swamp forests of the Congo Basin: habitat, density, and nesting: Copeia, v. 1999, p. 313320.Google Scholar
Rooney, T.O., 2020, The Cenozoic magmatism of East Africa: Part II—rifting of the mobile belt: Lithos, v. 360–361, p. 105291.CrossRefGoogle Scholar
Sadleir, R.W., and Makovicky, P.J., 2008, Cranial shape and correlated characters in crocodilian evolution: Journal of Evolutionary Biology, v. 21, p. 15781596.CrossRefGoogle ScholarPubMed
Scheyer, T.M., Aguilera, O.A., Delfino, M., Fortier, D.C., Carlini, A.A., Sánchez, R., Carrillo-Briceño, J.D., Quiroz, L., and Sánchez-Villagra, M.R., 2013, Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics: Nature Communications, v. 4, p. 1907.CrossRefGoogle ScholarPubMed
Schmidt, K.P., 1919, Contributions to the herpetology of the Belgian Congo based on the collection of the American Museum Congo expedition, 1909–1915. I. Turtles, crocodiles, lizards, and chamaeleons: Bulletin of the American Museum of Natural History, v. 39, p. 385624.Google Scholar
Schmidt, K.P., 1928, A new crocodile from New Guinea: Field Museum of Natural History Zoological Series, v. 12, p. 176181.Google Scholar
Schneider, J.G., 1801, Historiae Amphibiorum Naturalis et Literariae Fasciculus Secundus: Jena, F. Frommann, 364 p.Google Scholar
Sharkey, M.J., Stoelb, S., Miranda-Esquivel, D.R., and Sharanowski, B.J., 2013, Weighted compromise trees: a method to summarize competing phylogenetic hypotheses: Cladistics, v. 29, p. 309314.CrossRefGoogle Scholar
Shirley, M.H., Carr, A.N., Nestler, J.H., Vliet, K.A., and Brochu, C.A., 2018, Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844): Zootaxa, v. 4504, p. 151193.CrossRefGoogle Scholar
Smolensky, N.L., 2015, Co-occurring cryptic species pose challenges for conservation: a case study of the African dwarf crocodile (Osteolaemus spp.) in Cameroon: Oryx, v. 49, p. 584590.CrossRefGoogle Scholar
Smolensky, N.L., Hurtado, L.A., and Fitzgerald, L.A., 2015, DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles): Conservation Genetics, v. 16, p. 235240.CrossRefGoogle Scholar
Storrs, G.W., 2003, Late Miocene–Early Pliocene crocodilian fauna of Lothagam, southwest Turkana Basin, Kenya, in Leakey, M.G., and Harris, J.M., eds., Lothagam: The Dawn of Humanity in Eastern Africa: New York, Columbia University Press, p. 137159.Google Scholar
Sumrall, C.D., Brochu, C.A., and Merck, J.W., 2001, Global lability, regional resolution, and majority-rule consensus bias: Paleobiology, v. 27, p. 254261.2.0.CO;2>CrossRefGoogle Scholar
Swofford, D.L., 2002, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods): Sunderland, MA, Sinauer Associates.Google Scholar
Tchernov, E., 1986, Evolution of the crocodiles in East and North Africa: Paris, CNRS, 65 p.Google Scholar
Tchernov, E., and Couvering, J.V., 1978, New crocodiles from the Early Miocene of Kenya: Palaeontology, v. 21, p. 857867.Google Scholar
Van Couvering, J.a.H., and Van Couvering, J.A., 1976, Early Miocene mammal fossils from East Africa: aspects of geology, faunistics and paleoecology, in Isaac, G.L., and McCown, E., eds., Human Origins: Louis Leakey and the East African Evidence: Menlo Park, California, W.A. Benjamin Press, p. 155207.Google Scholar
Waitkuwait, W.E., 1986, Contribution a l'etude des crocodiles en afrique de l'ouest: Nature et Faune, v. 1, p. 1329.Google Scholar
Watkins, B., 2004, The middle Miocene Maboko Island primate locality: new data and the integration and reinterpretation of existing data suggest the paleoenvironment was lacustrine : American Journal of Physical Anthropology, v. 123, p. 204.Google Scholar
Wichura, H., Jacobs, L.L., Lin, A., Polcyn, M.J., Manthi, F.K., Winkler, D.A., Strecker, M.R., and Clemens, M., 2015, A 17-My-old whale constrains onset of uplift and climate change in east Africa: Proceedings of the National Academy of Sciences of the U. S. A., v. 112, p. 39103915.CrossRefGoogle ScholarPubMed
Wilberg, E., 2017, Investigating patterns of crocodyliform cranial disparity through the Mesozoic and Cenozoic: Zoological Journal of the Linnean Society, v. 181, p. 189208.CrossRefGoogle Scholar
Wilkinson, M., and Thorley, J.L., 2001, Efficiency of strict consensus trees: Systematic Biology, v. 50, p. 610613.CrossRefGoogle ScholarPubMed
Willis, P.M.A., Molnar, R.E., and Scanlon, J.D., 1993, An early Eocene crocodilian from Murgon, southeastern Queensland: Kaupia, v. 3, p. 2733.Google Scholar
Wu, X.-C., and Brinkman, D.B., 2015, A new crocodylian (Eusuchia) from the uppermost Cretaceous of Alberta, Canada: Canadian Journal of Earth Sciences, v. 52, p. 590607.CrossRefGoogle Scholar