Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T12:06:06.120Z Has data issue: false hasContentIssue false

A new chondrophorine (Hydrozoa, Velellidae) from the Upper Triassic of Nevada

Published online by Cambridge University Press:  19 May 2016

Jennifer A. Hogler
Affiliation:
Department of Paleontology, University of California, Berkeley 94720
Rex A. Hanger
Affiliation:
Department of Paleontology, University of California, Berkeley 94720

Abstract

Chondrophorines have a long but exceedingly sporadic history: they dot the late Precambrian and Paleozoic and are common in modern oceans, but have not been reported from the Mesozoic or Cenozoic save for a possible Triassic occurrence (Stanley, 1986) and a single Cretaceous appearance (Stanley and Kanie, 1985). Stanley (1982) suggested that much of the fossil record of the group may languish unrecognized and misidentified in museum drawers because of its generally molluscanlike aspect and poor representation in the literature. This suspicion is validated by the discovery of a velellid chondrophorine pneumatophore in the vertebrate collections of the University of California Museum of Paleontology (UCMP).

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, J. F. 1835. Prodromus descriptionis animalium ab H. Mertensio in orbis terrarum circumnavigatione observatorum. St. Petersburg, 76 p.Google Scholar
Camp, C. A. 1980. Large ichthyosaurs from the Upper Triassic of Nevada. Paleontographica, Abt. A, Band 170:139200.Google Scholar
Caster, K. 1942. Two new siphonophores from the Paleozoic. Paleontographica Americana, 3:5690.Google Scholar
Chamberlain, C. K. 1971. A by-the-wind sailor (Velellidae) from the Pennsylvanian flysch of Oklahoma. Journal of Paleontology, 45:724728.Google Scholar
Chamisso, A. de, and Eysenhardt, C. G. 1821. De animalibus qui-busdam e classe Vermium etc., fascicle 2 Academy Caesare Leopold, Nova Acta, 10:343374.Google Scholar
Oldow, J. S. 1981. Structure and stratigraphy of the Luning allochthon and the kinematics of allochthon emplacement, Pilot Mountains, west-central Nevada. Geological Society of America Bulletin, 92:888911.Google Scholar
Rauff, H. 1939. Paleonectris discoidea Rauff, eine Siphonophoride Meduse aus dem rheinischen Unterdevon nebst Bemerkungen zur umstrittnen Brooksella rhenana Kirkelin. Palaontlogische Zeitschrift, 21:194213.Google Scholar
Ruedemann, R. 1916. Paleontologic contributions from the New York State Museum. New York State Museum, Bulletin 189, 225 p.Google Scholar
Silberling, N. J., and Tozer, E. T. 1968. Biostratigraphic classification of the marine Triassic in North America. Geological Society of America, Special Paper 110, 62 p.Google Scholar
Stanley, G. D. Jr. 1982. Paleozoic chondrophores (medusoid hydrozoans) and their implications for problematical mollusclike fossils. Proceedings of the Third North American Paleontological Convention, 2:501504.Google Scholar
Stanley, G. D. Jr. 1986. Chondrophorine hydrozoans as problematic fossils, p. 6886. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford University Press, New York.Google Scholar
Stanley, G. D. Jr., and Kanie, Y. 1985. The first Mesozoic chondrophorine (medusoid hydrozoan) from the Lower Cretaceous of Japan. Palaeontology, 28:101109.Google Scholar
Stanley, G. D. Jr., and Yancey, T. E. 1986. A new late Paleozoic chondrophorine (Hydrozoa, Velellidae) by-the-wind sailor from Malaysia. Journal of Paleontology, 60:7683.CrossRefGoogle Scholar