Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T12:15:59.694Z Has data issue: false hasContentIssue false

Nearly complete skeleton of Tetraclaenodon (Mammalia, Phenacodontidae) from the early Paleocene of New Mexico: morpho-functional analysis

Published online by Cambridge University Press:  20 May 2016

Peter E. Kondrashov
Affiliation:
A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, 800 W. Jefferson St., Kirksville, Missouri 63501, USA,
Spencer G. Lucas
Affiliation:
New Mexico Museum of Natural History, 1801 Mountain Road, Albuquerque, New Mexico 87104, USA,

Abstract

We describe the relatively complete skeleton of Tetraclaenodon undoubtedly associated with its dentition, from the Torrejonian interval of the Nacimiento Formation in the San Juan Basin, New Mexico. Tetraclaenodon is the most primitive and oldest genus of the family Phenacodontidae and is very important for assessing the phylogenetic relationships of the family. The newly described skeleton belonged to a lightly built terrestrial mammal that could use trees for shelter. The structure of the ulna, manus, femur, crus, and pes corresponds to that of a typical terrestrial mammal, while morphological features such as the low greater tubercle of the humerus, long deltopectoral crest, pronounced lateral supracondylar crest, and hemispherical capitulum indicate some scansorial adaptations of Tetraclaenodon. The postcranial skeleton of Tetraclaenodon does not exhibit the cursorial adaptations seen in later phenacodontids and early perissodactyls. Phylogenetic analysis did not recover monophyletic “Phenacodontidae”; instead, phenacodontids formed a series of sister taxa to the Altungulata clade. Tetraclaenodon is the basal-most member of the “Phenacodontidae” + Altungulata clade.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, C. W. 1901. Preliminary note on some recently discovered extinct vertebrates from Egypt. Geological Magazine, 8:400436.Google Scholar
Archibald, J. D. 1998. Archaic ungulates (Condylarthra), p. 292331. InJanis, C. M., Scott, K. M., and Jacobs, L. L.(eds.), Evolution of Tertiary Mammals of North America. Vol. 1: Terrestrial Carnivores, Ungulates and Ungulatelike Mammals. Cambridge University Press, Cambridge.Google Scholar
Argot, C. 2001. Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology, 247:5179.Google Scholar
Argot, C. 2002. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology, 253:76108.CrossRefGoogle ScholarPubMed
Asher, R. J. 2007. A database of morphological characters and a combined-data reanalysis of placental mammal phylogeny. BMC (BioMed Central) Evolutionary Biology, 7:108.Google Scholar
Asher, R. J. and Lehmann, T. 2008. Dental eruption in Afrotherian mammals. BMC (BioMed Central) Evolutionary Biology, 6:14.Google Scholar
Asher, R. J., Novacek, M. J., and Geisler, J. H. 2003. Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. Journal of Mammalian Evolution, 10:131194.Google Scholar
Barnosky, A. D. 1982. Locomotion in moles (Insectivora, Proscalopidae) from the middle Tertiary of North America. Science, 216:183185.CrossRefGoogle ScholarPubMed
Beard, K. C. 1991. Vertical postures and climbing in the morphotype of Primatomorpha: implications for locomotor evolution in primate history, p. 7987. InCoppens, Y. and Senut, B.(eds.), Origines de la Bipédie chez les Hominidés. Editions du CNRS (Centre national de la recherche scientifique) (Cahiers de Paléoanthropologie), Paris.Google Scholar
Beard, K. C. 1998. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bulletin of the Carnegie Museum of Natural History, 34:539.Google Scholar
Blainville, H. M. 1841. Ostéographie et description iconographique des Mammifères récentes et fossiles (Carnivores). Vol. I, II. Paris. 446 p.Google Scholar
Cifelli, R. L. 1983. The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). American Museum Novitates, 2772:149.Google Scholar
Cope, E. D. 1873. On some Eocene mammals, obtained by Hayden's Geological survey of 1872. Paleontological Bulletin, 17:16.Google Scholar
Cope, E. D. 1874. Report upon vertebrate fossils, discovered in New Mexico, with description of new species, p. 588606. InAppendix FF3, Annual Report of the Chief of Engineers, 1874. U.S. Government Printing Office, Washington, D.C.Google Scholar
Cope, E. D. 1875. Systematic catalogue of Vertebrata of the Eocene of New Mexico, collected in 1874. Geographic Explorations and Surveys west of the 100th meridian, G. M. Wheeler, Corps of Engineers, U.S. Army, Washington, 4:37282.Google Scholar
Cope, E. D. 1881a. On some Mammalia from the lowest Eocene beds of New Mexico. Proceedings of the American Philosophic Society, 19:484495.Google Scholar
Cope, E. D. 1881b. Mammalia of the lower Eocene beds. American Naturalist, 15:337338.Google Scholar
Cope, E. D. 1882a. Notes of Eocene Mammalia. American Naturalist, 16:522.Google Scholar
Cope, E. D. 1882b. Some new forms of the Puerco Eocene. American Naturalist, 16:833834.Google Scholar
Cope, E. D. 1882c. Two new genera of Mammalia from the Wasatch Eocene. American Naturalist, 16:1029.Google Scholar
Cope, E. D. 1882d. Contribution to the history of the Vertebrata of the lower Eocene of Wyoming and New Mexico, made during 1881. Proceedings of the American Philosophic Society, 20:139197.Google Scholar
Cope, E. D. 1884a. The Vertebrata of the Tertiary formations of the West. Report of the United States Geological Survey of the West, 1009 p.Google Scholar
Cope, E. D. 1884b. The Condylarthra. American Naturalist, 18:790805; 892–906.Google Scholar
Cope, E. D. 1885. The oldest Tertiary Mammalia. American Naturalist, 19:385387.Google Scholar
Coues, E. 1887. Bassariscus, a new generic name in mammalogy. Science, 9:516.Google Scholar
Court, N. 1995. A new species of Numidotherium (Mammalia, Proboscidea) from the Eocene of Libya and the early phylogeny of the Proboscidea. Journal of Vertebrate Paleontology, 15:650671.Google Scholar
Davis, D. D. 1964. The giant panda: a morphological study of evolutionary mechanisms. Fieldiana Zoology Memoirs, 3:1339.Google Scholar
Delmer, C., Mahboubi, M., Tabuce, R., and Tassy, P. 2006. A new species of Moeritherium (Proboscidea, Mammalia) from the Eocene of Algeria: new perspectives on the ancestral morphotype of the genus. Palaeontology, 49:421434.Google Scholar
Ding, S. 1985. A Paleocene edentate from Nanxiong basin, Guangdong. Paleontologia Sinica, 24:1118.Google Scholar
Dunn, R. H. and Rasmussen, D. T. 2009. Skeletal Morphology of a new genus of Eocene insectivore (Mammalia, Erinaceomorpha) from Utah. Journal of Mammalogy, 90:321331.Google Scholar
Earle, C. 1893. On the systematic position of the genus Protogonodon. American Naturalist, 27:377379.Google Scholar
Emry, R. J. and Thorington, R. W. 1982. Descriptive and comparative osteology of the oldest fossil squirrel, Protosciurus (Rodentia, Sciuridae). Smithsonian Contributions to Paleobiology, 47:135.Google Scholar
Fischer, M. S. and Tassy, P. 1993. The interrelation between Proboscidea, Sirenia, Hyracoidea, and Mesaxonia, p. 217234. InSzalay, F. S., Novacek, M. J., and McKenna, M. C.(eds.), Mammal Phylogeny. Placentals. Springer-Verlag, New York.Google Scholar
Froehlich, D. J. 2002. Quo vadis eohippus? The systematics and taxonomy of the early Eocene equids (Perissodactyla). Zoological Journal of the Linnaean Society, 134:141156.Google Scholar
Froriep, L. F. 1806. C. Dumeril's Analytische Zoologie. Aus dem Französischen mit Zusätzen. Landes-Industrie-Comptoir, Weimar, 344 p.Google Scholar
Gambaryan, P. P. 1960. Adaptive Features of Locomotion Organs in Burrowing Mammals. Academy of Sciences of Armenian Soviet Socialist Republic Press, Yerevan, 195 p. (In Russian)Google Scholar
Gambaryan, P. P. 1974. How Mammals Run. Anatomical Adaptations. John Wiley & Sons, New York, 367 p.Google Scholar
Gazin, C. L. 1941. The mammalian fauna of the Paleocene of central Utah. Proceedings of the United States National Museum, 91:153.CrossRefGoogle Scholar
Gazin, C. L. 1965. A study of the early Tertairy condylarthran mammal Meniscotherium. Smithsonian Miscellaneous Collections, 149:198.Google Scholar
Gazin, C. L. 1968. A study of the Eocene condylarthran mammal Hyopsodus. Smithsonian Miscellaneous Collections, 153:189.Google Scholar
Gebo, D. L. and Rose, K. D. 1993. Skeletal morphology and locomotor adaptations in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology, 13:125144.Google Scholar
Gebo, D. L. and Sargis, E. J. 1994. Terrestrial adaptations in the postcranial skeleton of guenons. American Journal of Physical Anthropology, 93:341371.Google Scholar
Geisler, J. H. 2001. New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. American Museum Novitates, 3344:153.Google Scholar
Geoffroy, E., Saint-Hilaire, É., and Cuvier, F. G. 1795. Mémoire sur une nouvelle division des mammifères, et les principes qui doivent servir de base dans cette sorte de travail, lu à la Société d'Histoire naturelle, Ie premier floréal de l'an troisième. Magazine Encyclopédique, 2:164187.Google Scholar
Gheerbrant, E., Domning, D. P., and Tassy, P. 2005. Paenungulata (Sirenia, Proboscidea, Hyracoidea, and relatives), p. 84105. InRose, K. D. and Archibald, J. D.(eds.), The Rise of Placental Mammals. Origin and Relationships of the Major Extant Clades. The John Hopkins University Press, Baltimore.Google Scholar
Gingerich, P. D. 1976. Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). University of Michigan Papers on Paleontology, 15:1141.Google Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: Composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28:197.Google Scholar
Gingerich, P. D. 1990. Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, University of Michigan, 28:7992.Google Scholar
Gray, J. E. 1830–1834. Illustrations of Indian zoology; chiefly selected from the collection of Major-General Hardwicke. Treuttel, Wurtz, Treuttel, Jun and Richter, London. Vol. 1 and 2.Google Scholar
Hay, O. P. 1899. On the names of certain North American fossil vertebrates. Science, 9:593594.Google Scholar
Heinrich, R. and Houde, P. 2006. Postcranial anatomy of Viverravus (Mammalia, Carnivora) and implications for substrate use in basal Carnivora. Journal of Vertebrate Paleontology, 26:422435.Google Scholar
Heinrich, R. and Rose, K. D. 1997. Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40:279305.Google Scholar
Hildebrand, M. and Goslow, G. 2002. Analysis of Vertebrate Structure (fifth edition). John Wiley & Sons, New York, 660 p.Google Scholar
Holbrook, L. T. 2009. Osteology of Lophiodon Cuvier, 1822 (Mammalia, Perissodactyla) and its phylogenetic implications. Journal of Vertebrate Paleontology, 29:212230.Google Scholar
Hooker, J. J. 1989. Character polarities in early perissodactyls and their significance for Hyracotherium and infraordinal relationships, p. 79101. InProthero, D. R. and Schoch, R. M.(eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Hooker, J. J. 2005. Perissodactyla, p. 199214. InRose, K. D. and Archibald, J. D.(eds.), The Rise of Placental Mammals. The John Hopkins University Press, Baltimore and London.Google Scholar
Hooker, J. J. and Dashzeveg, D. 2003. Evidence for direct mammalian faunal interchange between Europe and Asia near the Paleocene–Eocene boundary, p. 479500. InWing, S. L., Gingerich, P. D., Schmitz, B., and Tomas, E.(eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369.Google Scholar
Hopwood, A. T. 1947. Contributions to the study of some African mammals. III. Adaptations in the bones of the fore-limb of the lion, leopard and cheetah. Journal of the Linnean Society of London (Zoology), 41:259271.Google Scholar
Howell, A. B. 1970. Aquatic Mammals: Their Adaptations to Life in the Water. Dover Press, New York, 338 p.Google Scholar
International Committee on Veterinary Gross Anatomical Nomenclature (I.C.V.G.A.N.). 2005. Nomina Anatomica Veterinaria. Available atwww.wava-amav.org/Downloads/nav_2005.pdf. Accessed 10 November 2010.Google Scholar
Janis, C. M., Archibald, J. D., Cifelli, R. L., Lucas, S. G., Schaff, C. R., Schoch, R. M., and Williamson, T. E. 1998. Archaic ungulates and ungulate-like mammals, p. 247259. InJanis, C. M., Scott, K. M., and Jacobs, L. L.(eds.), Evolution of Tertiary Mammals of North America. Vol. 1: Terrestrial Carnivores, Ungulates and Ungulatelike Mammals. Cambridge University Press, Cambridge.Google Scholar
Jenkins, F. A. Jr. and Krause, D. W. 1983. Adaptation for climbing in North American multituberculates (Mammalia). Science, 220:712714.Google Scholar
Kielan-Jawarowska, Z. and Gambaryan, P. P. 1994. Postcranial anatomy and habits of Asian multituberculate mammals. Fossils and Strata, 36:192.Google Scholar
Kondrashov, P. E. 1998. The taxonomic position and relationships of the order Hyracoidea (Mammalia, Eutheria) within the Ungulata sensu lato. Paleontological Journal, 32:418428.Google Scholar
Kondrashov, P. and Agadjanian, A. K. 2005. A nearly complete skeleton of Ernanodon (Mammalia, Ernanodonta) from Mongolia: Functional analysis. Journal of Vertebrate Paleontology, 25:79A, Supplement.Google Scholar
Lacépède, B. G. E de. 1799. Mémoire sur une nouvelle table méthodique des animaux à mamelles. Mémoires de l'Institut National des Sciences et des Arts. Sciences Mathématiques et Physiques, 3:469502.Google Scholar
Ladevèze, S., Missiaen, P., and Smith, T. 2010. First skull of Orthaspidotherium edwardsi (Mammalia, “Condylarthra”) from the late Paleocene of Berru (France) and phylogenetic affinities of the enigmatic European family Pleuraspidotheriidae. Journal of Vertebrate Paleontology, 30:15591578.Google Scholar
Larson, S. G. 1988. Subscapularis function in gibbons and chimpanzees: Implications for interpretation of humeral head torsion in hominoids. American Journal of Physical Anthropology, 76:449462.Google Scholar
Leidy, J. 1870. Remarks on the collection of fossils from the western Territories. Proceedings of the Academy of Natural Sciences of Philadelphia, 22:109110.Google Scholar
Lemoine, V. 1878. Recherches sur les Ossements fossils des terrains tertiares inférieurs des environs de Reims. Annales Des Sciences Naturelles, 3:156.Google Scholar
Lemoine, V. 1885. Etude sur quelques mammifères de petite taille de la faune cernaysienne des environs de Reims. Bulletin de la Société Géologique de France, 13:203217.Google Scholar
Lemoine, V. 1891. Etude d'ensemble sur les dents des mammifères fossiles des environs de Reims. Bulletin de la Société Géologique de France, 19:263291.Google Scholar
Libed, S. A., Lucas, S. G., and Kondrashov, P. E. 2001. Anagenetic evolution of Tetraclaenodon, a Paleocene “condylarth” from the San Juan Basin, New Mexico. Journal of Vertebrate Paleontology, 21:73A, Supplement.Google Scholar
Lopatin, A. V. 2006. Early Paleogene insectivore mammals from Asia and establishment of the major groups of Insectivora. Paleontological Journal, 40:205405, Supplement.Google Scholar
Marsh, O. C. 1872. Preliminary description of new Tertiary mammals, Parts I–IV. American Journal of Science and Arts, 4:122128, 202–224.Google Scholar
Matthew, W. D. 1897. A revision of the Puerco fauna. Bulletin of the American Museum of Natural History, 9:259323.Google Scholar
Matthew, W. D. 1915a. A revision of the lower Eocene Wasatch and the Wind River faunas. Pt. 1. Order Ferae (Carnivora), Suborder Creodonta. Bulletin of the American Museum of Natural History, 34:4103.Google Scholar
Matthew, W. D. 1915b. A revision of the lower Eocene Wasatch and the Wind River faunas. Pt. 2. Order Condylarthra, family Hyopsodontidae. Bulletin of the American Museum of Natural History, 34:311328.Google Scholar
Matthew, W. D. 1937. Paleocene faunas of the San Juan Basin, New Mexico. Transactions of the American Philosophic Society, 30:1510.Google Scholar
McKenna, M. C. and Bell, S. K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 p.Google Scholar
McKenna, M. C., Chow, M., Ting, S., and Luo, Z. 1989. Radinskya yupingae, a perissodactyl-like mammal from the late Paleocene of southern China, p. 2436. InProthero, D. R. and Schoch, R. M.(eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Morlo, M. and Gunnell, G. F. 2003. Small Limnocyonines (Hyaenodontidae, Mammalia) from the Bridgerian middle Eocene of Wyoming: Thinocyon, Prolimnocyon, and Iridonon, new genus. Contributions from the Museum of Paleontology, University of Michigan, 31:4378.Google Scholar
Osborn, H. F. 1898. Remounted skeleton of Phenacodus primaevus. Comparison with Euprotogonia. Bulletin of the American Museum Natural History, 10:159164.Google Scholar
Owen, R. 1841. Descriptions of the fossil remains of a mammal (Hyracotherium leporinum) and of a bird (Lithornis vulturinus) from the London Clay. Transactions of the Geological Society of London, 6:203208.Google Scholar
Penkrot, T. A., Zack, S. P., Rose, K. D., and Bloch, J. I. 2008. Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): evidence for a Paleocene Holarctic origin of Macroscelidea, p. 73106. InSargis, E. J. and Dagosto, M.(eds.), Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer Science, Dordrecht.Google Scholar
Peters, W. C. H. 1847. Charakteristik die neuen Säugethiergatt Rhynchocyon u. d. Frucht eines Nilpferdes. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuss. Akademie der Wissenschaften zu Berlin, 12:36.Google Scholar
Polly, P. D. 2008. Adaptive zones and the pinniped ankle: a three-dimensional quantitative analysis of carnivoran tarsal evolution, p. 167196. InSargis, E. J. and Dagosto, M.(eds.), Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer Science, Dordrecht.CrossRefGoogle Scholar
Prothero, D. R. and Schoch, R. M. 1989. Classification of the Perissodactyla, p. 504537. InProthero, D. R. and Schoch, R. M.(eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Radinsky, L. D. 1965. Evolution of tapiroid skeleton from Heptodon to Tapirus. Bulletin of the Museum of Comparative Zoology, 134:69106.Google Scholar
Radinsky, L. D. 1966. The adaptive radiation of the phenacodontid condylarths and the origin of Perissodactyla. Evolution, 20:408417.Google Scholar
Reed, C. A. 1951. Locomotion and appendicular anatomy in three soricoid insectivores. American Midland Naturalist, 45:513671.Google Scholar
Rose, K. D. 1985. Comparative osteology of North American dichobunid artiodactyls. Journal of Paleontology, 59:12031226.Google Scholar
Rose, K. D. 1987. Climbing adaptations in the early Eocene mammal Chriacus and the origin of Artiodactyla. Science, 236:314316.Google Scholar
Rose, K. D. 1996a. Skeleton of early Eocene Homogalax and the origin of Perissodactyla. Palaeovertebrata, 25:243260.Google Scholar
Rose, K. D. 1996b. On the origin of the order Artiodactyla. Proceedings of the National Academy of Sciences of the United States of America, 93:17051709.Google Scholar
Rose, K. D. 2001. Compendium of Wasatchian mammal postcrania from the Willwood Formation of the Bighorn Basin. University of Michigan Papers on Paleontology, 33:157181.Google Scholar
Rose, K. D. 2006. The Beginning of the Age of Mammals. The John Hopkins University Press, Baltimore, 428 p.Google Scholar
Rose, K. D. and Chinnery, B. J. 2004. The postcranial skeleton of early Eocene rodents. Bulletin of Carnegie Museum of Natural History, 36:211244.CrossRefGoogle Scholar
Rose, K. D. and Emry, R. J. 1983. Extraordinary fossorial adaptation in the Oligocene palaeanodonts Epoicotherium and Xenocranium (Mammalia). Journal of Morphology, 175:3356.Google Scholar
Rose, K. D. and Emry, R. J. 1993. Relationships of Xenarthra, Pholidota, and fossil “Edentates”: the morphological evidence, p. 81102. InSzalay, F. S., Novacek, M. J., and McKenna, M. C.(eds.), Mammal Phylogeny. Placentals. Springer-Verlag, New York.Google Scholar
Rose, K. D. and Lucas, S. G. 2000. An early Paleocene palaeanodont (Mammalia, ?Pholidota) from New Mexico, and the origin of Palaeanodonta. Journal of Vertebrate Paleontology, 20:139156.Google Scholar
Rose, K. D., Emry, R. J., and Gingerich, P. D. 1992. Skeleton of Alocodontulum atopum, an early Eocene epoicotheriid (Mammalia, Palaeanodonta) from the Bighorn basin, Wyoming. Contributions from the Museum of Paleontology University of Michigan, 28:221245.Google Scholar
Rose, M. D. 1988. Another look at the anthropoid elbow. Journal of Human Evolution, 17:193224.Google Scholar
Roth, V. L. 1990. Insular dwarf elephants: a case study in body mass estimation and ecological inference, p. 151179. InDamuth, J. and MacFadden, B. J.(eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, New York.Google Scholar
Salton, J. A. and Sargis, E. J. 2008. Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton, p. 5171. InSargis, E. J. and Dagosto, M.(eds.), Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer Science, Dordrecht.Google Scholar
Sánchez-Villagra, M. R., Narita, Y., and Kuratani, S. 2007. Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Systematics and Biodiversity, 5:17.Google Scholar
Sargis, E. J. 2002a. Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology, 253:1042.Google Scholar
Sargis, E. J. 2002b. Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology, 254:149185.Google Scholar
Schaeffer, B. 1947. Notes on the origin and function of the artiodactyl tarsus. American Museum Novitates, 1356:121.Google Scholar
Schlosser, M. 1911. Beiträge zur Kenntnis der Oligozänen Landsäugetiere dem Fayum (Ägypten). Beiträge zur Paläontologie und Geologie von Osterreich-Ungarns und des Orients, 24:51167.Google Scholar
Scott, K. M. 1990. Postcranial dimensions of ungulates as predictors of body mass, p. 301336. InDamuth, J. and MacFadden, B. J.(eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, New York.Google Scholar
Scott, W. D. 1892. A revision of North American Creodonta with notes on some genera which have been referred to that group. Proceedings of the Academy of Natural Sciences of Philadelphia, 4:291323.Google Scholar
Shoshani, J. and McKenna, M. C. 1998. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Molecular Phylogenetics and Evolution, 9:572584.Google Scholar
Sloan, R. E. 1970. Cretaceous and Paleocene terrestrial communities of western North America. Proceedings of the North American Paleontological Convention, Pt. E:427453.Google Scholar
Sloan, R. E. and Van Valen, L. 1965. Cretaceous mammals from Montana. Science, 148:220227.Google Scholar
Springer, M. S., Stanhope, M. J., Madsen, O., and de Jong, W. W. 2004. Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution, 19:430438.Google Scholar
Stein, B. 2000. Morphology of subterranean rodents, p. 1961. InLacey, E. A., Patton, J. L., and Cameron, G. N.(eds.), Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago.Google Scholar
Storr, G. C. C. 1780. Prodromus Methodi Mammalium. Ad Instituendam ex Decreto Gratiosæ Facultatis Medicæ pro Legitime Consequendo Doctoris Medicinæ Gradu Inauguralem Disputationem Propositus Præside. Tubingæ. (Dissertatio Medica). Reiss, 43 p.Google Scholar
Swofford, D. L. 2002. PAUP∗: Phylogenetic Analysis Using Parsimony (∗and Other Methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Szalay, F. S. 1977. Phylogenetic relationships and a classification of the eutherian Mammalia, p. 315374. InHecht, M. K., Goody, P. C., and Hecht, B. M.(eds.), Major Patterns in Vertebrate Evolution. NATO Advanced Study Institute. Series A. Vol. 14. Plenum Publication Company, New York.Google Scholar
Szalay, F. S. and Dagosto, M. 1980. Locomotor adaptations as reflected on the humerus of Paleogene Primates. Folia Primatologia, 34:145.Google Scholar
Szalay, F. S. and Decker, R. L. 1974. Origins, evolution, and function of the tarsus in late Cretaceous Eutheria and Paleocene Primates, p. 239259. InJenkins, F. A.(ed.), Primate Locomotion. Academic Press, New York.Google Scholar
Szalay, F. S. and Lucas, S. G. 1996. The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. New Mexico Museum of Natural History and Science Bulletin, 7:147.Google Scholar
Szalay, F. S. and Sargis, E. J. 2001. Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas, 23:139302.Google Scholar
Tabuce, R., Coiffait, B., Coiffait, P-E., Mahboubi, M., and Jaeger, J-J. 2001. A new genus of Macroscelidea (Mammalia) from the Eocene of Algeria: A possible origin for elephant-shrews. Journal of Vertebrate Paleontology, 21:535546.CrossRefGoogle Scholar
Tabuce, R. L., Asher, R. J., and Lehman, T. 2008. Afrotherian mammals: A review of current data. Mammalia, 72:214.Google Scholar
Tabuce, R., Marivaux, L., Adaci, M., Bensalah, M., Hartenberger, J-L., Mahboudi, M., Mebrouk, F., Tafforeau, P., and Jaeger, J-J. 2007. Early Tertiary mammals from North Africa reinforce the molecular Afrotheria clade. Proceedings of the Royal Society B, 274:11591166.CrossRefGoogle ScholarPubMed
Taylor, B. K. 1978. The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. Journal of Morphology, 157:347368.Google Scholar
Taylor, M. E. 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). Journal of Morphology, 143:307336.Google Scholar
Taylor, M. E. 1976. The functional anatomy of the hindlimb of some African Viverridae (Carnivora). Journal of Morphology, 148:227254.Google Scholar
Thewissen, J. G. M. 1990. Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra). University of Michigan Papers on Paleontology, 29:1107.Google Scholar
Thewissen, J. G. M. and Domning, D. P. 1992. The role of phenacodontids in the origin of the modern orders of ungulate mammals. Journal of Vertebrate Paleontology, 12:494504.Google Scholar
Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History, 132:1126.Google Scholar
Van Valen, L. 1978. The beginning of the age of mammals. Evolutionary Theory, 4:4580.Google Scholar
Van Valkenburgh, V. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology, 7:162182.Google Scholar
Verma, K. 1963. The appendicular skeleton of Indian hedgehogs. Mammalia, 27:564580.Google Scholar
Vinogradov, B. S. and Gambaryan, P. P. 1952. Oligocene cylindrodonts from Mongolia and Kazakhstan. Proceedings of the Paleontological Institute, 41:2439. (In Russian)Google Scholar
Wang, J. and Tong, Y. 1997. A new phenacodontid condylarth (Mammalia) from the Early Eocene of the Wutu basin, Shandong. Vertebrata Palasiatica, 35:283289.Google Scholar
West, R. M. 1976. The North American Phenacodontidae (Mammalia, Condylarthra). Milwaukee Public Museum Contributions in Biology and Geology, 6:178.Google Scholar
Williamson, T. E. 1996. The beginning of the age of mammals in the San Juan Basin, New Mexico: Biostratigraphy and evolution of Paleocene mammals of the Nacimiento Formation. New Mexico Museum Natural History and Science Bulletin, 8:1141.Google Scholar
Williamson, T. E. and Lucas, S. G. 1992. Meniscotherium (Mammalia, Condylarthra) from the Paleocene–Eocene of western North America. New Mexico Museum Natural History and Science Bulletin, 1:175.Google Scholar
Wilson, R. W. 1949. Preliminary report on a Torrejonian faunule from near Angel's Peak, San Juan Basin, New Mexico. Geological Society of America Bulletin, 60:19301931.Google Scholar
Zack, S. P., Penkrot, T. A., Bloch, J. J., and Rose, K. D. 2005. Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature, 434:497501.Google Scholar