Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-18T19:51:57.424Z Has data issue: false hasContentIssue false

The nasal cavity of two traversodontid cynodonts (Eucynodontia, Gomphodontia) from the Upper Triassic of Brazil

Published online by Cambridge University Press:  19 March 2021

Arymathéia Santos Franco*
Affiliation:
Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Brazil
Rodrigo Temp Müller
Affiliation:
Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Brazil Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Rua Maximiliano Vizzotto, 598, 97230-000, São João do Polêsine, Brazil
Agustín G. Martinelli
Affiliation:
CONICET-Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Av. Ángel Gallardo 470, C1405 DJR, Buenos Aires, Argentina
Carolina A. Hoffmann
Affiliation:
Programa de Pós Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, PUCRS, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900, Porto Alegre, Brazil
Leonardo Kerber*
Affiliation:
Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Brazil Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Rua Maximiliano Vizzotto, 598, 97230-000, São João do Polêsine, Brazil Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Av. Perimetral, 1901, 66077-830, Belém, Brazil
*
*Corresponding author
*Corresponding author

Abstract

Traversodontidae is a group of Triassic herbivorous/omnivorous cynodonts that represents the most diversified lineage within Cynognathia. In southern Brazil, a rich fossil record of late Middle/mid-Late Triassic cynodonts has been documented, with Exaeretodon riograndensis Abdala, Barberena, and Dornelles, 2002 and Siriusgnathus niemeyerorum Pavanatto et al., 2018 representing two abundant and well-documented traversodontids. The present study provides a comparative analysis of the morphology of the nasal cavity, nasal recesses, nasolacrimal duct, and maxillary canals of both species using computed tomography, highlighting the changes that occurred in parallel to the origin of mammaliaforms. Our results show that there were no ossified turbinals or a cribriform plate delimiting the posterior end of the nasal cavity, suggesting these structures were probably cartilaginous as in nonmammaliaform cynodonts. Both species show lateral ridges on the internal surface of the roof of the nasal cavity, but the median ridge for the attachment of a nasal septum is absent. Exaeretodon riograndensis and S. niemeyerorum show recesses on the dorsal region of the nasal cavity, which increase the volume of the nasal cavity, potentially enhancing the olfactory chamber and contributing to the sense of smell. On the lateral sides of the nasal cavity, the analyzed taxa show a well-developed maxillary recess. Although E. riograndensis and S. niemeyerorum have roughly similar nasal cavities, in the former taxon, the space between the left and right dorsal recesses of the nasal cavity is uniform along its entire extension, whereas this space narrows posteriorly in S. niemeyerorum. Finally, the nasolacrimal duct of S. niemeyerorum is more inclined anteroposteriorly than in E. riograndensis.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdala, F., 2021, Permo-Jurassic cynodonts: the early road to mammalness, in Alderton, D. and Elias, S.A., eds., Encyclopedia of geology, 2nd ed., Amsterdam: Springer, p. 206226. https://doi.org/10.1016/B978-0-12-409548-9.12020-2.CrossRefGoogle Scholar
Abdala, F., and Gaetano, L.C, 2018, The Late Triassic record of cynodonts: time of innovations in the mammalian lineage, in Tanner, L.H., ed., The Late Triassic World—Earth in a Time of Transition: Topics in Geobiology, v. 46, p. 407445.CrossRefGoogle Scholar
Abdala, F., and Ribeiro, A.M., 2010, Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 286, p. 202217.CrossRefGoogle Scholar
Abdala, F., Barberena, M.C., and Dornelles, J., 2002, A new species of the traversodontid cynodont Exaeretodon from the Santa Maria Formation (Middle/Late Triassic) of southern Brazil: Journal of Vertebrate Paleontology, v. 22, p. 313325.CrossRefGoogle Scholar
Barberena, M.C., 1981, Uma nova espécie de Massetognathus (Massetognathus ochagaviae sp. nov.) da Formação Santa Maria, Triássico do Rio Grande do Sul: Pesquisas, v. 14, p. 181195.Google Scholar
Barberena, M.C., Bonaparte, J.F., and Teixeira, A.M.S., 1987, Thrinaxodon brasiliensis sp. nov., a primeira ocorrência de cinodontes galessauros para o Triássico do Rio Grande do Sul: Anais do X Congresso Brasileiro de Geologia, v. 1, p. 6774.Google Scholar
Benoit, J., Manger, P.R., and Rubidge, B.S., 2016, Palaeoneurological clues to the evolution of defining mammalian soft tissue traits: Scientific Reports, v. 6, n. 25604.CrossRefGoogle ScholarPubMed
Benoit, J., Ruf, I., Miyamae, J.A., Fernandez, V., Rodrigues, P.G., and Rubidge, B.S., 2019, The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors: Journal of Mammalian Evolution, v. 27, p. 329348.CrossRefGoogle Scholar
Billet, G., Hautier, L., De Thoisy, B., and Delsuc, F., 2017, The hidden anatomy of paranasal sinuses reveals biogeographically distinct morphotypes in the nine-banded armadillo (Dasypus novemcinctus): PeerJ, v. 5, n. e3593.CrossRefGoogle Scholar
Bonaparte, J.F., 1962, Descripción del cráneo y mandíbula de Exaeretodon frenguellii, Cabrera y su comparación con Diademodontidae, Tritylodontidae y los cinodontes sudamericanos: Publicaciones del Museo Municipal de Ciencias Naturales y Tradicional de Mar del Plata, v. 1, p. 135202.Google Scholar
Bonaparte, J.F., 1966, Sobre las cavidades cerebral, nasal y otras estructuras del cráneo de Exaeretodon sp. (Cynodontia-Traversodontidae): Acta Geológica Lilloana, v. 8, p. 531.Google Scholar
Bonaparte, J.F., Martinelli, A.G., Schultz, C.L., and Rubert, R., 2003, The sister group of mammals: small cynodonts from the Late Triassic of Southern Brazil: Revista Brasileira de Paleontologia, v. 5, p. 527.Google Scholar
Bonaparte, J.F., Martinelli, A.G., and Schultz, C.L., 2005, New information on Brasilodon and Brasilitherium (Cynodontia, Probainognathia) from the Late Triassic of Southern Brazil: Revista Brasileira de Paleontologia, v. 8, p. 2546.CrossRefGoogle Scholar
Brink, A.S., 1955, A study on the skeleton of Diademodon: Palaeontologia africana, v. 3, p. 339.Google Scholar
Cabreira, S.F., Schultz, C.L., Bittencourt, J.S., Soares, M.B., Fortier, D.C., Silva, L.R., and Langer, M. C., 2011, New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil: Naturwissenschaften, v. 98, p. 10351040.CrossRefGoogle ScholarPubMed
Chinsamy, A., and Abdala, F., 2008, Palaeobiological implications of the bone microstructure of South American traversodontids (Therapsida: Cynodontia): South African Journal of Science, v. 104, p. 225230.Google Scholar
Clarke, A., and Pörtner, H.O., 2010, Temperature, metabolic power and the evolution of endothermy: Biological Reviews, v. 85, p. 703727.Google ScholarPubMed
Crompton, A.W., 1958, The cranial morphology of a new genus and species of ictidosauran: Proceedings of the Zoological Society of London, v. 130, p. 183216.CrossRefGoogle Scholar
Crompton, A.W., Musinsky, C., and Owerkowicz, T., 2015, Evolution of the mammalian nose, in Dial, K., Shubin, N., and Brainerd, E., eds., Great Transformations in Vertebrate Evolution: Chicago, University of Chicago Press, p. 189203.Google Scholar
Crompton, A.W., Owerkowicz, T., Bhullar, B.A., and Musinsky, C., 2017, Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: speculations on the evolution of mammalian endothermy: Journal of Vertebrate Paleontology, v. 37, n. e1269116.CrossRefGoogle Scholar
Curtis, A.A., and Van Valkenburgh, B., 2014, Beyond the sniffer: frontal sinuses in Carnivora: The Anatomical Record, v. 297, p. 20472064.CrossRefGoogle ScholarPubMed
Curtis, A.A., Lai, G., Wei, F., and Van Valkenburgh, B., 2015, Repeated loss of frontal sinuses in arctoid carnivorans: Journal of Morphology, v. 276, p. 2232.CrossRefGoogle ScholarPubMed
Farke, A.A., 2008, Frontal sinuses and head-butting in goats: a finite element analysis: Journal of Experimental Biology, v. 211, p. 30853094.CrossRefGoogle ScholarPubMed
Farke, A.A., 2010a, Evolution and functional morphology of the frontal sinuses in Bovidae (Mammalia: Artiodactyla), and implications for the evolution of cranial pneumaticity: Zoological Journal of the Linnean Society, v. 159, p. 9881014.CrossRefGoogle Scholar
Farke, A.A., 2010b, Evolution, homology, and function of the supracranial sinuses in ceratopsian dinosaurs: Journal of Vertebrate Paleontology, v. 30, p. 14861500.CrossRefGoogle Scholar
Fernicola, J.C., Toledo, N., Bargo, M.S., and Vizcaíno, S.F., 2012, A neomorphic ossification of the nasal cartilages and the structure of paranasal sinus system of the glyptodont Neosclerocalyptus Paula Couto 1957 (Mammalia, Xenarthra): Palaeontologia Electronica 15.3.27A, 22 p., https://palaeo-electronica.org/content/2012-issue-3-articles/305-glyptodont-nasal-anatomy.CrossRefGoogle Scholar
Fonseca, P.H.M., Martinelli, A.G., Marinho, T.daS., Ribeiro, L.C.B., Schultz, C.L., and Soares, M.B., 2020, Morphology of the endocranial cavities of Campinasuchus dinizi (Crocodyliformes: Baurusuchidae) from the Upper Cretaceous of Brazil: Geobios, v. 58, p. 122.CrossRefGoogle Scholar
Fourie, S., 1974, The cranial morphology of Thrinaxodon liorhinus Seeley: Annals of the South African Museum, v. 65, p. 337400.Google Scholar
Hendrickx, C., Gaetano, L.C., Choiniere, J.N., Mocke, H., and Abdala, F., 2020, A new traversodontid cynodont with a peculiar postcanine dentition from the Middle/Late Triassic of Namibia and dental evolution in basal gomphodonts: Journal of Systematic Palaeontology, v. 18, p. 16691706.CrossRefGoogle Scholar
Hillenius, W.J., 1992, The evolution of nasal turbinates and mammalian endothermy: Paleobiology, v. 18, p. 1729.CrossRefGoogle Scholar
Hillenius, W.J., 1994, Turbinates in therapsids: evidence for late Permian origins of mammalian endothermy: Evolution, v. 48, p. 207229.CrossRefGoogle ScholarPubMed
Hillenius, W.J., 2000, Septomaxilla of nonmammalian synapsids: soft-tissue correlates and a new functional interpretation: Journal of Morphology, v. 245, p. 2950.3.0.CO;2-B>CrossRefGoogle Scholar
Hoffmann, C.A., Rodrigues, P.G., Soares, M.B., and Andrade, M.D., 2019, Brain endocast of two non-mammaliaform cynodonts from southern Brazil: an ontogenetic and evolutionary approach: Historical Biology, https://doi.org/10.1080/08912963.2019.1685512.CrossRefGoogle Scholar
Hopson, J.A., and Kitching, J., 2001, Probainognathian cynodont from South Africa: Bulletin of the Museum of Comparative Zoology, v. 156, p. 535.Google Scholar
Keir, J., 2009, Why do we have paranasal sinuses?: Journal of Laryngology and Otology, v. 123, p. 48.CrossRefGoogle ScholarPubMed
Kemp, T.S., 1979, The primitive cynodont Procynosuchus: functional anatomy of the skull and relationships: Philosophical Transactions of the Royal Society of London B, Biological Sciences, v. 285, p. 73122.Google Scholar
Kemp, T.S., 1980, Aspects of the structure and functional anatomy of the Middle Triassic cynodont Luangwa: Journal of Zoology, v. 191, p. 193239.CrossRefGoogle Scholar
Kemp, T.S., 2006, The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure: Zoological Journal of the Linnean Society, v. 147, p. 473488.CrossRefGoogle Scholar
Kerber, L., Ferreira, J.D., and Negri, F.R., 2019, A reassessment of the cranial morphology of Neoepiblema acreensis (Rodentia: Chinchilloidea), a Miocene rodent from South America: Journal of Morphology, v. 280, p. 18211838.CrossRefGoogle Scholar
Kerber, L., Martinelli, A., Rodrigues, P.G., Ribeiro, A.M., Schultz, C.L., and Soares, M.B., 2020, New record of Prozostrodon brasiliensis (Eucynodontia: Prozostrodontia) from its type-locality (Upper Triassic, southern Brazil): comments on the endocranial morphology: Revista Brasileira de Paleontologia, v. 23, p. 259269.CrossRefGoogle Scholar
Kermack, K.A., Mussett, F., and Rigney, H.W., 1981, The skull of Morganucodon: Zoological Journal of the Linnean Society, v. 71, p. 1158.CrossRefGoogle Scholar
Kerr, R., 1792, The Animal Kingdom, or Zoological System, of the Celebrated Sir Charles Linnaeus. Class I. Mammalia: London, A. Strahan and T. Cadell, 651 p.Google Scholar
Kielan-Jaworowska, Z., Cifelli, R.L., and Luo, Z-X., 2004, Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure: New York, Columbia University Press, 630 p.CrossRefGoogle Scholar
Kühne, W.G., 1956, The Liassic therapsid Oligokyphus: London, Trustees of the British Museum, 149 p.Google Scholar
Kühne, W.G., and Krusat, G., 1972, Legalisierung des taxon Haldanodon (Mammalia, Docodonta): Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1972, p. 300302.Google Scholar
Laaß, M., Hampe, O., Schudack, M., Hoff, C., Kardjilov, N., and Hilger, A., 2011, New insights into the respiration and metabolic physiology of Lystrosaurus: Acta Zoologica, v. 92, p. 363371.CrossRefGoogle Scholar
Lillegraven, J.A., and Krusat, G., 1991, Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters: Rocky Mountain Geology, v. 28, p. 39138.Google Scholar
Liparini, A., Oliveira, T.V., Pretto, F.A., Soares, M.B., and Schultz, C.L., 2013, The lower jaw and dentition of the traversodontid Exaeretodon riograndensis Abdala, Barberena & Dornelles, from the Brazilian Triassic (Santa Maria 2 Sequence, Hyperodapedon Assemblage Zone): Alcheringa, v. 37, p. 331337.CrossRefGoogle Scholar
Liu, J., and Abdala, F., 2014, Phylogeny and taxonomy of the Traversodontidae, in Kammerer, C.F., Angielczyk, K.D., and Fröbisch, J., eds., Early Evolutionary History of the Synapsida: Dordrecht, Springer, p. 255279.CrossRefGoogle Scholar
Liu, J., and Olsen, P., 2010, The phylogenetic relationships of Eucynodontia (Amniota: Synapsida): Journal of Mammalian Evolution, v. 17, p. 151176.CrossRefGoogle Scholar
Macrini, T.E., 2006, The evolution of endocranial space in mammals and non-mammalian cynodonts [Ph.D. dissertation]: Austin, The University of Texas, 278 p.Google Scholar
Macrini, T.E., de Muizon, C., Cifelli, R.L., and Rowe, T., 2007, Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian: Journal of Vertebrate Paleontology, v. 27, p. 99107.CrossRefGoogle Scholar
Márquez, S., 2008, The paranasal sinuses: the last frontier in craniofacial biology: The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, v. 291, p. 13501361.CrossRefGoogle ScholarPubMed
Martinelli, A.G., and Soares., M.B., 2016. Evolution of South American cynodonts, in Agnolin, F.L., Lio, G.L., Egli, F.B., Chimento, N.R., and Novas, F.E., eds., Historia Evolutiva y Paleobiogeográfica de los Vertebrados de América del Sur. Contribuciones del MACN, no. 6: Buenos Aires, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigación de las Ciencias Naturales, p. 183196.Google Scholar
Martinelli, A.G., Escobar, J.A., Francischini, H., Kerber, L., Müller, R.T., Rubert, R., Schultz, C.L., and Da-Rosa, Á.A.S., 2020, New record of a stahleckeriid dicynodont (Therapsida, Dicynodontia) from the Late Triassic of southern Brazil and biostratigraphic remarks on the Riograndia Assemblage Zone: Historical Biology, https://doi.org/10.1080/08912963.2020.1850715.CrossRefGoogle Scholar
Martínez, R.N., May, C.L., and Forster, C.A., 1996, A new carnivorous cynodont from the Ischigualasto Formation (Late Triassic, Argentina), with comments on eucynodont phylogeny: Journal of Vertebrate Paleontology, v. 16, p. 271284.CrossRefGoogle Scholar
Miron, L.R., Pavanatto, A.E.B., Pretto, F.A., Müller, R.T., Dias-da-Silva, S., and Kerber, L., 2020, Siriusgnathus niemeyerorum (Eucynodontia: Gomphodontia): the youngest South American traversodontid?: Journal of South American Earth Sciences, v. 97, n. 102394.CrossRefGoogle Scholar
Moore, W.J., 1981, The Mammalian Skull: Cambridge, Cambridge University Press, 369 p.Google Scholar
Mori, F., Hanida, S., Kumahata, K., Miyabe-Nishiwaki, T., Suzuki, J., Matsuzawa, T., and Nishimura, T.D., 2015, Minor contributions of the maxillary sinus to the air-conditioning performance in macaque monkeys: Journal of Experimental Biology, v. 218, p. 23942401.Google ScholarPubMed
Müller, R.T., 2020, A new theropod dinosaur from a peculiar Late Triassic assemblage of southern Brazil: Journal of South American Earth Sciences, https://doi.org/10.1016/j.jsames.2020.103026.Google Scholar
Müller, R.T., and Garcia, M.S., 2019, Rise of an empire: analysing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses: Historical Biology, v. 32, p. 13341339.CrossRefGoogle Scholar
Müller, R.T., de Araújo-Júnior, H.I., Aires, A.S.S., Roberto-da-Silva, L., and Dias-da-Silva, S., 2015, Biogenic control on the origin of a vertebrate monotypic accumulation from the Late Triassic of southern Brazil: Geobios, v. 48, p. 331340.CrossRefGoogle Scholar
Müller, R.T., von Baczko, M.B., Desojo, J.B., and Nesbitt, S.J., 2020, The first ornithosuchid from Brazil and its macroevolutionary and phylogenetic implications for Late Triassic faunas in Gondwana: Acta Palaeontologica Polonica, v. 65, https://doi.org/10.4202/app.00652.2019.CrossRefGoogle Scholar
Novacek, M J., 1993, Patterns of diversity in the mammalian skull, in Hanken, J., and Hall, B.K., eds., The Skull, v. 2: Chicago, The University of Chicago Press, p. 438545.Google Scholar
Oliveira, T.V.D., Schultz, C.L., and Soares, M.B., 2007, O esqueleto pós-craniano de Exaeretodon riograndensis Abdala et al. (Cynodontia, Traversodontidae), Triássico do Brasil: Revista Brasileira de Paleontologia, v. 10, p. 7994.CrossRefGoogle Scholar
Oliveira, T.V., Soares, M.B., and Schultz, C.L., 2010, Trucidocynodon riograndensis gen. nov. et sp. nov. (Eucynodontia), a new cynodont from the Brazilian Upper Triassic (Santa Maria Formation): Zootaxa, v. 2382, https://doi.org/10.11646/zootaxa.2382.1.1CrossRefGoogle Scholar
Owen, R., 1859, On some reptilian remains from South Africa: New Philosophical Journal, v. 10, p. 1289.Google Scholar
Pavanatto, A.E.B., Pretto, F.A., Kerber, L., Müller, R.T., Da-Rosa, Á.A.S., and Dias-da-Silva, S., 2018, A new Upper Triassic cynodont-bearing fossiliferous site from southern Brazil, with taphonomic remarks and description of a new traversodontid taxon: Journal of South American Earth Sciences, v. 88, p. 179196.CrossRefGoogle Scholar
Pavanatto, A.E., Kerber, L., and Dias-da-Silva, S., 2019, Virtual reconstruction of cranial endocasts of traversodontid cynodonts (Eucynodontia: Gomphodontia) from the Upper Triassic of Southern Brazil: Journal of Morphology, v. 280, p. 12671281.CrossRefGoogle ScholarPubMed
Pretto, F.A., Schultz, C.L., and Langer, M.C., 2015, New dinosaur remains from the Late Triassic of southern Brazil (Candelária Sequence, Hyperodapedon Assemblage Zone): Alcheringa, v. 39, p. 264273.CrossRefGoogle Scholar
Pretto, F.A., Langer, M.C., and Schultz, C.L., 2019, A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan: Zoological Journal of the Linnean Society, v. 185, p. 388416.CrossRefGoogle Scholar
Pusch, L.C., Kammerer, C.F., and Fröbisch, J., 2019a, Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters: Journal of Anatomy, v. 234, p. 592621.CrossRefGoogle Scholar
Pusch, L.C., Ponstein, J., Kammerer, C.F., and Fröbisch, J., 2019b, Novel endocranial data on the early therocephalian Lycosuchus vanderrieti underpin high character variability in early theriodont evolution: Frontiers in Ecology and Evolution, https://doi.org/10.3389/fevo.2019.00464.CrossRefGoogle Scholar
Ranslow, A.N., Richter, J.P., Neuberger, T., Van Valkenburgh, B., Rumple, C.R., Quigley, A., Pang, B., Krane, M.H., and Craven, B.A., 2014, Reconstruction and morphometric analysis of the nasal airway of the white-tailed deer (Odocoileus virginianus) and implications regarding respiratory and olfactory airflow: The Anatomical Record, v. 297, p. 21382147.CrossRefGoogle ScholarPubMed
Reznik, G.K., 1990, Comparative anatomy, physiology, and function of the upper respiratory tract: Environmental Health Perspectives, v. 85, p. 171176.Google ScholarPubMed
Rodrigues, P.G., 2005, Endotermia em cinodontes não-mamalianos a busca por evidências osteológicas [M.Sc. thesis]: Porto Alegre, Brazil, Universidade Federal do Rio Grande do Sul, 113 p.Google Scholar
Rodrigues, P.G., Ruf, I., and Schultz, C.L., 2013, Study of a digital cranial endocast of the non-mammaliaform cynodont Brasilitherium riograndensis (later Triassic, Brazil) and its relevance to the evolution of the mammalian brain: Paläontologische Zeitschrift, v. 88, p. 329352.CrossRefGoogle Scholar
Romer, A.S., 1967, The Chañares (Argentina) Triassic reptile fauna. III. Two new gomphodonts, Massetognathus pascuali and M. teruggii: Breviora, v. 264, p. 125.Google Scholar
Romer, A.S., 1970, The Chañares (Argentina) Triassic reptile fauna. VI. A chiniquodontid cynodont with incipient squamosal-dentary jaw articulation: Breviora, v. 344, p. 118.Google Scholar
Rossie, J.B., 2006, Ontogeny and homology of the paranasal sinuses in Platyrrhini (Mammalia: Primates): Journal of Morphology, v. 267, p. 140.CrossRefGoogle Scholar
Rowe, T.B., 2017, The emergence of mammals, in Kass, J., ed., Evolution of Nervous Systems, v. 2: Cambridge, Academic Press, p. 152.Google Scholar
Rowe, T.B., Eiting, T.P., Macrini, T.E., and Ketcham, R.A., 2005, Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica: Journal of Mammalian Evolution, v. 12, p. 303336.CrossRefGoogle Scholar
Rowe, T.B., Macrini, T.E., and Luo, Z.X., 2011, Fossil evidence on origin of the mammalian brain: Science, v. 332, p. 955957.CrossRefGoogle ScholarPubMed
Ruf, I., Maier, W., Rodrigues, P.G., and Schultz, C.L., 2014, Nasal anatomy of the non-mammaliaform cynodont Brasilitherium riograndensis (Eucynodontia, Therapsida) reveals new insight into mammalian evolution: The Anatomical Record, v. 297, p. 20182030.CrossRefGoogle ScholarPubMed
Ruf, I., Janßen, S., and Zeller, U., 2015, The ethmoidal region of the skull of Ptilocercus lowii (Ptilocercidae, Scandentia, Mammalia)—a contribution to the reconstruction of the cranial morphotype of primates: Primate Biology, v. 2, p. 89110.CrossRefGoogle Scholar
Seeley, H.G., 1894, Research on the structure, organization, and classification of the fossil Reptilia. Part IX, Section 3. On Diademodon: Philosophical Transactions of the Royal Society of London, v. 185, p. 10291041.Google Scholar
Sharp, A.C., 2016, A quantitative comparative analysis of the size of the frontoparietal sinuses and brain in vombatiform marsupials: Memoirs of Museum Victoria, v. 74, p. 331342.CrossRefGoogle Scholar
Sidor, C.A., and Hancox, P.J., 2006, Elliotherium kersteni, a new tritheledontid from the lower Elliot Formation (Upper Triassic) of South Africa: Journal of Paleontology, v. 80, p. 333342.CrossRefGoogle Scholar
Stefanello, M., Müller, R.T., Kerber, L., Martínez, R.N., and Dias-da-Silva, S., 2018, Skull anatomy and phylogenetic assessment of a large specimen of Ecteniniidae (Eucynodontia: Probainognathia) from the Upper Triassic of southern Brazil: Zootaxa, v. 4457, p. 351378.CrossRefGoogle ScholarPubMed
Stefanello, M., Kerber, L., Martinelli, A.G., and Dias-da-Silva, S., 2020, A new prozostrodontian cynodont (Eucynodontia, Probainognathia) from the Upper Triassic of southern Brazil: Journal of Vertebrate Paleontology, n. e1782415.CrossRefGoogle Scholar
Van Valkenburgh, B., Theodor, J., Friscia, A., Pollack, A., and Rowe, T., 2004, Respiratory turbinates of canids and felids: a quantitative comparison: Journal of Zoology, v. 264, p. 281293.CrossRefGoogle Scholar
Wallace, R.V., Martínez, R., and Rowe, T., 2019, First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina: PLoS ONE, v. 14, n. e0218791.CrossRefGoogle ScholarPubMed
Watson, D.M.S., 1913, Further notes on the skull, brain, and organs of special sense of Diademodon: Annals and Magazine of Natural History, v. 8, p. 217228.CrossRefGoogle Scholar
Witmer, L.M., 1997, The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity: Journal of Vertebrate Paleontology, v. 17, suppl. 1, p. 177.CrossRefGoogle Scholar
Witmer, L.M., 1999, The phylogenetic history of paranasal air sinuses, in Koppe, T., Nagai, H., and Alt, K.W., eds., The Paranasal Sinuses of Higher Primates: Development, Function, and Evolution: Berlin, Quintessence, p. 2132.Google Scholar
Witmer, L.M., and Ridgely, R.C., 2009, New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior: The Anatomical Record, v. 292, p. 12661296.CrossRefGoogle Scholar