Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T07:53:17.556Z Has data issue: false hasContentIssue false

Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia)

Published online by Cambridge University Press:  03 December 2018

Kun Liang
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
Robert J. Elias
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Dong-Jin Lee
Affiliation:
Department of Earth and Environmental Sciences, Andong National University, Andong 36729, Korea

Abstract

Based on multivariate morphometric analysis, Halysites catenularius is identified from the Rumba Formation (Telychian) and Jaagarahu Formation (Sheinwoodian) of Estonia; H. priscus is confirmed as a junior synonym. Halysites catenularius, H. junior, and H. senior are shown to be closely related; H. catenularius is morphologically intermediate. Cyclomorphism in H. catenularius, recorded by fluctuations of corallite tabularial area, indicates an average annual growth rate of 6.0 mm, which is typical for halysitids. Tubules in H. catenularius, generated from small intramural openings between adjacent corallites, were involved in two types of interstitial increase. The intramural openings, three types of lateral increase, temporary agglutinated patches of corallites, and axial increase documented in H. catenularius resemble features in some species of Catenipora. These similarities are consistent with the interpretation that Halysites evolved from Catenipora. Evaluation of the possibility that both genera are polyphyletic will require further detailed analysis of additional species.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bae, B.-Y., Elias, R.J., and Lee, D.-J., 2006a, Morphometrics of Catenipora (Tabulata; Upper Ordovician; southern Manitoba, Canada): Journal of Paleontology, v. 80, p. 889901.Google Scholar
Bae, B.-Y., Lee, D.-J., and Elias, R.J., 2006b, Life-history strategies of a species of Catenipora (Tabulata; Upper Ordovician; southern Manitoba, Canada): Lethaia, v. 39, p. 141156.Google Scholar
Bae, B.-Y., Lee, D.-J., and Elias, R.J., 2008, Life-history strategies of Manipora amicarum Sinclair, 1955 (Tabulata; Upper Ordovician; southern Manitoba, Canada): Lethaia, v. 41, p. 367381.Google Scholar
Bae, B.-Y., Elias, R.J., and Lee, D.-J., 2013, Growth characteristics in co-occurring Upper Ordovician species of the tabulate Catenipora from southern Manitoba, Canada: Lethaia, v. 46, p. 98113.Google Scholar
Bassett, M.G., Kaljo, D., and Teller, L., 1989, The Baltic region, in Holl, C.H., and Bassett, M.G., eds., A Global Standard for the Silurian System: National Museum of Wales, Geological Series, v. 9, p. 158170.Google Scholar
Buehler, E.J., 1955, The morphology and taxonomy of the Halysitidae: Peabody Museum of Natural History Bulletin, v. 8, 79 p.Google Scholar
Coates, A.G., and Jackson, J.B.C., 1987, Clonal growth, algal symbiosis, and reef formation by corals: Paleobiology, v. 13, p. 363378.Google Scholar
Coates, A.G., and Oliver, W.A. Jr., 1973, Coloniality in zoantharian corals, in Boardman, R.S., Cheetham, A.H., and Oliver, W.A. Jr., eds., Animal Colonies: Development and Function Through Time: Stroudsburg, Dowden, Hutchinson & Ross, p. 327.Google Scholar
De Boer, P.L., 1973, On the presumed dimorphism within Halysites colonies: Geologie en Mijnbouw, v. 52, p. 221225.Google Scholar
Dixon, J., 1976, Corallite increase and a new corallite type in Upper Ordovician cateniform corals: Journal of Paleontology, v. 50, p. 916921.Google Scholar
Ehrenberg, C.G., 1834, Beiträge zur physiologischen Kenntniss der Corallenthiere im allgemeinen, und besonders des Rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben: Akademie der Wissenschaften physikalisch-mathematische Klasse, Abhandlungen, v. 1832, p. 225380.Google Scholar
Elias, R.J., and Lee, D.-J., 1993, Microborings and growth in Late Ordovician halysitids and other corals: Journal of Paleontology, v. 67, p. 922934.Google Scholar
Elias, R.J., Lee, D.-J., and Woo, S.-K., 2008, Corallite increase and mural pores in Lichenaria (Tabulata, Ordovician): Journal of Paleontology, v. 82, p. 408421.Google Scholar
Fischer von Waldheim, G.F., 1828, Notice sur les polypiers tubipores fossiles: Moscow, Université Impériale, p. 923.Google Scholar
Flower, R.H., 1961, Montoya and related colonial corals: New Mexico Bureau of Mines and Mineral Resources Memoir 7, part I, p. 197.Google Scholar
Flower, R.H., and Duncan, H.M., 1975, Some problems in coral phylogeny and classification, in Pojeta, J. Jr., and Pope, J.K., eds., Studies in Paleontology and Stratigraphy: Bulletins of American Paleontology, v. 67, no. 287, p. 175192.Google Scholar
Frech, F., 1897, Referat, J. Wentzel: Zur Kenntniss der Zoantharia tabulata: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1897(part 2), p. 212214.Google Scholar
Gao, J., 1992, Growth rates of early Silurian corals and sponges from the Fossil Hill Formation, Manitoulin Island, Ontario [M.Sc. thesis], Sudbury, Ontario, Laurentian University, 93 p.Google Scholar
Gao, J., and Copper, P., 1997, Growth rates of middle Paleozoic corals: early Silurian of eastern Canada, in Lessios, H.S., and Macintyre, I.G., eds., Proceedings of the 8th International Coral Reef Symposium, Volume 2: Panama, Smithsonian Tropical Research Institute, p. 16511656.Google Scholar
Gass, S.E., and Roberts, J.M., 2011, Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea: Journal of the Marine Biological Association of the United Kingdom, v. 91, p. 831835.Google Scholar
Hamada, T., 1959, Corallum growth of the Halysitidae: Journal of the Faculty of Science, University of Tokyo, Section II, v. 11, p. 273289.Google Scholar
Hill, D., 1981, Part F, Coelenterata, Supplement 1, Rugosa and Tabulata, Volume 2, in Teichert, C., ed., Treatise on Invertebrate Paleontology. Boulder and Lawrence, Geological Society of America and University of Kansas, p. F379F762.Google Scholar
Isakar, M., Ebbestad, J.O.R., and Peel, J.S., 1999, Homeomorphic gastropods from the Silurian of Norway, Estonia and Bohemia: Norsk Geologisk Tidsskrift, v. 79, p. 281288.Google Scholar
Jakubowicz, M., Berkowski, B., Correa, M.L., Jarochowska, E., Joachimski, M., and Belka, Z., 2015, Stable isotope signatures of Middle Palaeozoic ahermatypic rugose corals—deciphering secondary alteration, vital fractionation effects, and palaeoecological implications: PLoS ONE, v. 10(9), e0136289, doi:10.1371/journal.pone.0136289.Google Scholar
Kiipli, E., Kiipli, T., and Kallaste, T., 2006, Identification of the O-bentonite in the deep shelf sections with implication on stratigraphy and lithofacies, East Baltic Silurian: GFF, v. 128, p. 255260.Google Scholar
Klaamann, E., 1961, Tabulyaty i geliolitidy Venloka Estonii [The Wenlockian Tabulata and Heliolitida of Estonia]: Eesti NSV Teaduste Akadeemia, Geoloogia Instituudi Uurimused, v. 6, p. 69112. [in Russian with English summary]Google Scholar
Klaamann, E., 1966, Inkommunikatnye tabulyaty Estonii [The incommunicate Tabulata of Estonia]: Tallinn, Eesti NSV Teaduste Akadeemia, Geoloogia Instituut, 96 p. [in Russian with English summary]Google Scholar
de Lamarck, J.B.P.A. de M., 1816, Histoire naturelle des animaux sans vertèbres, Volume 2: Paris, 568 p.Google Scholar
Larcom, E.A., McKean, D.L., Brooks, J.M., and Fisher, C.R., 2014, Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico: Deep-Sea Research I, v. 85, p. 101109.Google Scholar
Laub, R.S., 1979, The corals of the Brassfield Formation (mid-Llandovery; lower Silurian) in the Cincinnati Arch region: Bulletins of American Paleontology, v. 75, no. 305, 457 p.Google Scholar
Lee, D.-J., and Elias, R.J., 1991, Mode of growth and life-history strategies of a Late Ordovician halysitid coral: Journal of Paleontology, v. 65, p. 191199.Google Scholar
Lee, D.-J., and Elias, R.J., 2000, Paleobiologic and evolutionary significance of corallite increase and associated features in Saffordophyllum newcombae (Tabulata, Late Ordovician, southern Manitoba): Journal of Paleontology, v. 74, p. 404425.Google Scholar
Lee, D.-J., and Noble, J.P.A., 1990, Colony development and formation in halysitid corals: Lethaia, v. 23, p. 179193.Google Scholar
Lee, D.-J., Jun, Y.-H., Bae, B.-Y., and Elias, R.J., 2007, Axial increase in some early tabulate corals, in Hubmann, B., and Piller, W.E., eds., Fossil Corals and Sponges: Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Graz 2003: Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommissionen, v. 17, p. 3141.Google Scholar
Liang, K., Lee, D.-J., Elias, R.J., Pärnaste, H., and Mõtus, M.-A., 2013, Growth characteristics of Protoheliolites norvegicus (Tabulata; Upper Ordovician; Estonia): Palaeontology, v. 56, p. 867891.Google Scholar
Liang, K., Elias, R.J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2016, Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China: Journal of Paleontology, v. 90, 10271048.Google Scholar
Liang, K., Elias, R.J., and Lee, D.-J., 2018, The early record of halysitid tabulate corals, and morphometrics of Catenipora from the Ordovician of north-central China: Papers in Palaeontology, v. 4, 363379.Google Scholar
Linnaeus, C., 1758, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis: Laurentius Salvius (Holmiae), Tomus 1, 10th ed., Reformata, 824 p.Google Scholar
Linnaeus, C., 1767, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis: Laurentius Salvius (Holmiae), Tomus 1, 12th ed., v. 1, part 2, p. 5331327.Google Scholar
Milne-Edwards, H., and Haime, J., 1849, Mémoire sur les polypiers appartenant aux groupes naturels des Zoanthaires perforés et des Zoanthaires tabulés: Académie des Sciences de Paris, Comptes Rendus, v. 29, p. 257263.Google Scholar
Milne-Edwards, H., and Haime, J., 1850, A Monograph of the British Fossil Corals; First Part, Introduction: London, Palaeontographical Society, v. 3, p. ilxxxv.Google Scholar
Milne-Edwards, H., and Haime, J., 1854, A Monograph of the British Fossil Corals; Fifth Part, Corals from the Silurian Formation: London, Palaeontographical Society, v. 8, p. 245299.Google Scholar
Mortensen, P.B., and Rapp, H.T., 1998, Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): implications for determination of linear extension rates: Sarsia, v. 83, p. 433446.Google Scholar
Mõtus, M.-A., and Hints, O., 2007, 10th International Symposium on Fossil Cnidaria and Porifera, Excursion B2: Lower Paleozoic geology and corals of Estonia, Excursion Guidebook: Tallinn, Institute of Geology, Tallinn University of Technology, 64 p.Google Scholar
Mõtus, M.-A., and Klaamann, E., 1999, The halysitid coral genera Halysites and Cystihalysites from Gotland, Sweden: GFF, v. 121, p. 8190.Google Scholar
Mõtus, M.-A., and Zaika, Y., 2012, The oldest heliolitids from the early Katian of the East Baltic region: GFF, v. 134, p. 225234.Google Scholar
Nelson, S.J., 1963, Ordovician paleontology of the northern Hudson Bay Lowland: Geological Society of America Memoir 90, 152 p.Google Scholar
Nowiński, A., 1991, Late Carboniferous to Early Permian Tabulata from Spitsbergen: Palaeontologia Polonica, v. 51, p. 374.Google Scholar
Oliver, W.A. Jr., 1968, Some aspects of colony development in corals, in Macurda, D.B. Jr., ed., Paleobiological Aspects of Growth and Development, A Symposium: Paleontological Society Memoir 2 (Journal of Paleontology, v. 42, no. 5, Supplement), p. 1634.Google Scholar
Pratchett, M.S., Anderson, K.D., Hoogenboom, M.O., Widman, E., Baird, A.H., Pandolfi, J.M., Edmunds, P.J., and Lough, J.M., 2015, Spatial, temporal and taxonomic variation in coral growth—implications for the structure and function of coral reef ecosystems: Oceanography and Marine Biology: An Annual Review, v. 53, p. 215295.Google Scholar
Risk, M.J., Hall-Spencer, J., and Williams, B., 2005, Climate records from the Faroe-Shetland Channel using Lophelia pertusa (Linnaeus, 1758), in Freiwald, A., and Roberts, J.M., eds., Cold-Water Corals and Ecosystems: Berlin, Springer-Verlag, p. 10971108.Google Scholar
Scrutton, C.T., 1984, Origin and early evolution of tabulate corals, in Oliver, W.A. Jr., Sando, W.J., Cairns, S.D., Coates, A.G., Macintyre, I.G., Bayer, F.M., and Sorauf, J.E., eds., Recent Advances in the Paleobiology and Geology of the Cnidaria: Palaeontographica Americana, v. 54, p. 110118.Google Scholar
Scrutton, C.T., 1985, Subclass Tabulata, in Murray, J.W., ed., Atlas of Invertebrate Macrofossils: New York, Wiley, p. 3136.Google Scholar
Scrutton, C.T., 1998, The Palaeozoic corals, II: structure, variation and palaeoecology: Yorkshire Geological Society Proceedings, v. 52, p. 157.Google Scholar
Scrutton, C.T., and Powell, J.H., 1980, Periodic development of dimetrism in some favositid corals: Acta Palaeontologica Polonica, v. 25, p. 477491.Google Scholar
Sinclair, G.W., 1955, Some Ordovician halysitoid corals: Royal Society of Canada Transactions, Series 3, Section 4, v. 49, p. 95103.Google Scholar
Sokolov, B.S., 1947, Novye syringoporidy Taymyra [New syringoporids from the Taymyr]: Moskovskogo Obshchestva Ispytatelei Prirody, Byulletin (Geologiia), v. 22 (part 6), p. 1928.Google Scholar
Stanley, G.D. Jr., and Lipps, J.H., 2011, Photosymbiosis: the driving force for reef success and failure: Paleontological Society Papers, v. 17, p. 3360.Google Scholar
Stasińska, A., 1967, Tabulata from Norway, Sweden and from the erratic boulders of Poland: Palaeontologia Polonica, v. 18, p. 1112.Google Scholar
Stasińska, A., 1981, Aggregated character of the colony in Catenipora and Halysites: Acta Palaeontologica Polonica, v. 25(1980), p. 493496.Google Scholar
Thomas, H.D., and Smith, S., 1954, The coral genus Halysites Fischer von Waldheim: Annals and Magazine of Natural History, v. 12, p. 765774.Google Scholar
Turnšek, D., and Košir, A., 2004, Bacarella vipavica n. gen., n. sp. (Anthozoa, Scleractinia) from reefal blocks in lower Eocene carbonate megabeds in the Vipava Valley (SW Slovenia): Razprave Slovenska Akademija Znanosti in Umetnosti, Razred za Naravoslovne Vede, 4, v. 45, p. 145169.Google Scholar
Vinn, O., and Wilson, M.A., 2012, Encrustation and bioerosion on late Sheinwoodian (Wenlock, Silurian) stromatoporoids from Saaremaa, Estonia: Carnets de Géologie, v. CG2012, p. 183191.Google Scholar
Wang, G., and Zhan, R., 2015, A new species of middle Rhuddanian Halysites (Tabulata) from Meitan, northern Guizhou, southwest China: Estonian Journal of Earth Sciences, v. 64, p. 105109.Google Scholar
Wang, G.-X., and Deng, Z.-Q., 2010, Application of cluster analysis to classification of cateniporids: Acta Palaeontologica Sinica, v. 49, p. 478486. [in Chinese with English abstract]Google Scholar
Webby, B.D., 1975, Patterns of increase in coenosteoid halysitid corals: Alcheringa, v. 1, p. 3136.Google Scholar
Webby, B.D., and Semeniuk, V., 1969, Ordovician halysitid corals from New South Wales: Lethaia, v. 2, p. 345360.Google Scholar
Webby, B.D., Elias, R.J., Young, G.A., Neuman, B.E.E., and Kaljo, D., 2004, Corals, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event. New York, Columbia University Press, p. 124146.Google Scholar
Whitfield, R.P., 1900, Observations on and descriptions of Arctic fossils: American Museum of Natural History Bulletin 13, p. 1922.Google Scholar
Wilson, A.E., 1926, An Upper Ordovician fauna from the Rocky Mountains, British Columbia: Geological Survey of Canada Museum Bulletin 44, p. 134.Google Scholar
Young, G.A., and Elias, R.J., 1995, Latest Ordovician to earliest Silurian colonial corals of the east-central United States: Bulletins of American Paleontology, v. 108, no. 347, 148 p.Google Scholar
Young, G.A., and Kershaw, S., 2005, Classification and controls of internal banding in Palaeozoic stromatoporoids and colonial corals: Palaeontology, v. 48, p. 623651.Google Scholar
Young, G.A., and Noble, J.P.A., 1987, The Llandovery–Wenlock Halysitidae from New Brunswick, Canada: Journal of Paleontology, v. 61, p. 11251147.Google Scholar
Zapalski, M.K., 2014, Evidence of photosymbiosis in Palaeozoic tabulate corals. Proceedings of the Royal Society B, v. 281, 20132663.Google Scholar
Zapalski, M.K., Wrzołek, T., Skompski, S., and Berkowski, B., 2017, Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland). Coral Reefs, v. 36, p. 847860.Google Scholar