Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T16:08:24.287Z Has data issue: false hasContentIssue false

Molecular phylogeny of rhynchonellide articulate brachiopods (Brachiopoda, Rhynchonellida)

Published online by Cambridge University Press:  20 May 2016

Bernard L. Cohen
Affiliation:
University of Glasgow, Urquhart Building, Rm 203, Garscube Estate, Switchback Road, Glasgow, G61 1QH, Scotland, UK, ,
Maria Aleksandra Bitner
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland,

Abstract

We present here the first report based on phylogenetic analyses of small subunit (SSU/18S) and large subunit (LSU/28S) ribosomal DNA (rDNA) sequences from a wider-than-token sample of rhynchonellide articulate brachiopods, with data from 11 of ∼20 extant genera (12 species) belonging to all four extant superfamilies. Data exploration by network and saturation analyses shows that the molecular sequence data are free from major aberrations and are suitable for phylogenetic reconstruction despite the presence of large deletions in four SSU rDNA sequences. Although molecular sequence analyses cannot directly illuminate the systematics of fossils, the independent, genealogical evidence and phylogenetic inferences about extant forms that they make possible are highly relevant to paleontological systematics because they highlight the limitations of evolutionary inference from morphology. Parsimony, distance, maximum likelihood (no clock) and Bayesian (relaxed-clock) analyses all find a tree topology that disagrees strongly with the existing superfamily classification. All tested phylogenetic reconstructions agree that the taxa analyzed fall into three clades designated A1, A2, and B that reflect two major divergence events. The relaxed-clock analysis indicates that clades A and B diverged in the Paleozoic, while clades A1 and A2 reflect Permo-Triassic (and later) events. Morphological homoplasy and possible gene co-option are suggested as the main sources for the discord between the morpho-classification, the results of cladistic analyses of morphology, and the relationships reconstructed from molecular sequences. The origin, function and evolutionary implications of the deletion-bearing rhynchonellide SSU rDNA sequences are briefly discussed in relation to pseudogenes and concerted evolution in the rDNA genomic region.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, D. V. 1965. Mesozoic and Cenozoic Rhynchonellacea, p. H597H625. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology. Pt. H, Brachiopoda. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Bitner, M. A. 2009. Recent brachiopods from the Norfolk Ridge, New Caledonia, with descriptions of four new species. Zootaxa, 2235:139.Google Scholar
Carlson, S. J. 1995. Revision and review of the Order Pentamerida. Third International Brachipod Congress, Sudbury, Ontario, Canada, p. 5358.Google Scholar
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17:540552.CrossRefGoogle ScholarPubMed
Cohen, B. L. 2000. Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proceedings of the Royal Society, London, Series B, 267:225231.CrossRefGoogle ScholarPubMed
Cohen, B. L. 2001a. Advances in molecular studies, p. 119120. InBrunton, C. H. C., Cocks, R., and Long, S. L.(eds.), Brachiopods Past and Present. Taylor and Francis, London.Google Scholar
Cohen, B. L. 2001b. Brachiopod molecular phylogeny advances, p. 121128. InBrunton, C. H. C., Cocks, R., and Long, S. L.(eds.), Brachiopods Past and Present. Taylor and Francis, London.Google Scholar
Cohen, B. L. 2001c. Genetics and molecular systematics of brachiopods, p. 5367. InCarlson, S. J. and Sandy, M. R.(eds.), Brachiopods ancient and modern. A tribute to G. Arthur Cooper Vol. 7. The Paleontological Society, Pittsburgh, Pennsylvania.Google Scholar
Cohen, B. L. 2007. The brachiopod genome, p. 23562372. InSelden, P. A.(ed.), Treatise on Invertebrate Paleontology. Vol. 6, Pt. H (Supplement), Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Cohen, B. L., Bitner, M. A., Harper, E. M., Lee, D. E., Mutschke, E., and Sellanes, J. 2011. Vicariance and convergence in Magellanic and New Zealand long-looped brachiopod clades (Pan-Brachiopoda: Terebratelloidea). Zoological Journal of the Linnean Society, 162:631645.Google Scholar
Cohen, B. L. and Gawthrop, A. B. 1997. The brachiopod genome, p. 189211. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Vol. 1, Pt. H, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Cohen, B. L., Gawthrop, A. B., and Cavalier-Smith, T. 1998. Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philosophical Transactions of the Royal Society B, 353:20392061.Google Scholar
Cohen, B. L., Long, S. L., and Saito, M. 2008. Living craniids: preliminary molecular evidence of their inter-relationships. Fossils and Strata, 54:283287.Google Scholar
Cohen, B. L. and Weydmann, A. 2005. Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the Early Cambrian. Organisms, Diversity and Evolution, 5:253273.Google Scholar
Darwin, C. 1859. On the Origin of Species. John Murray, London, 1502p.Google Scholar
Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics, 12:99124.Google Scholar
Holland, P. W. H. 1990. Homeobox genes and segmentation: co-option, co-evolution and convergence. Developmental Biology, 1:135145.Google Scholar
Huson, D. H. 1998. SplitsTree: analysing and visualizing evolutionary data. Bioinformatics, 14:6873.CrossRefGoogle Scholar
Lee, D. E., MacKinnon, D. I., Smirnova, T. N., Baker, P. G., Boucot, A. J., Yu-Gan, J., and Dong-Li, S. 2006. Order Terebratulida, p. 19651993. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Vol. 5, Pt. H, Brachiopoda, revised.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Logan, A. 2007. Geographic distribution of extant articulate brachiopods, p. 30833115. InSelden, P. A.(ed.), Treatise on Invertebrate Paleontology. Vol. 6, Pt. H, Brachiopoda, revised.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Lüter, C. and Cohen, B. L. 2002. DNA sequence evidence for speciation, Mesozoic dispersal and paraphyly in cancellothyridid articulate brachiopods. Marine Biology, 141:6574.Google Scholar
Manceñido, M. O. and Motchurova-Dekova, N. 2010. A review of crural types, their relationship to shell microstructure, and significance among post-Palaeozoic Rhynchonellida. Special Papers in Palaeontology, 84:203224.Google Scholar
Manceñido, M. O., Owen, E. E., and Sun, D.-L. 2007. Post-palaeozoic Rhynchonellida, p. 27272741. InSelden, P. A.(ed.), Treatise on Invertebrate Paleontology. Vol. 6, Pt. H, Brachiopoda, revised.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Manceñido, M. O. and Owen, E. F. 2001. Post-Paleozoic Rhynchonellida (Brachiopoda): classification and evolutionary background, p. 189200. InCocks, L. R. M., Brunton, C. H. C., and Long, S. L.(eds.), Proceedings of the Millennium Brachiopod Congress. Taylor and Francis, London.Google Scholar
Posada, D. 2001. Selecting the best-fit model of nucleotide substitution. Systematic Biology, 50:580601.Google Scholar
Posada, D. and Buckley, T. R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53:793808.CrossRefGoogle ScholarPubMed
Posada, D. and Crandall, K. P. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14:817818.Google Scholar
Ronquist, F. R., Huelsenbeck, J., and Teslenko, M. 2011. Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries. Distributed with the software fromhttp//:brahms.biology.rochester.edu/software.html.Google Scholar
Ronquist, F. R. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:15721574.Google Scholar
Saito, M. and Endo, K. 2001. Molecular phylogeny and morphological evolution of laqueoid brachiopods. Paleontological Research, 5:87100.Google Scholar
Santagata, S. and Cohen, B. L. 2009. Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zoological Journal of the Linnean Society, 157:3450.Google Scholar
Savage, N. M. 2007. Rhynchonellida, p. 27032741. InSelden, P. A.(ed.), Treatise on Invertebrate Paleontology. Vol. 6, Pt. H, Brachiopoda, revised.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Savage, N. M., Manceñido, M. O., Owen, E. E., Carlson, S. J., Grant, R. E., Dagys, A. S., and Dong-Li, S. 2002. Rhynchonellida, p. 10271376. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Vol. 4, Pt. H, Brachiopoda, revised.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Schmidt, H. and McLaren, D. J. 1965. Paleozoic Rhynchonellacea, p. 552597. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology. Pt. H, Brachiopoda.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Simmons, M. P. 2011. Radical instability and spurious branch support by likelihood when applied to matrices with non-random distributions of missing data. Molecular Phylogenetics and Evolution, 62:472484.Google Scholar
Swofford, D. L. 2000. Phylogenetic Analysis Using Parsimony (∗and Other Methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Telford, M. L. and Littlewood, D. T. J. 2009. Animal Evolution: Genomes, Fossils, and Trees. Oxford University Press, Oxford, 1245p.Google Scholar
Thorne, J. L. and Kishino, H. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology, 51:689702.Google Scholar
True, J. R. and Carroll, S. B. 2002. Gene co-option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology 18:5380.Google Scholar
Wiens, J. J. and Morrill, M. C. 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology, 60:719731.Google Scholar
Williams, A., Carlson, S. J., and Brunton, C. H. C. 2000. Rhynchonelliformea, p. 193902. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology, Vols. 2, 3, Pt. H, Brachiopoda, revised.Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.Google Scholar