Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T08:04:00.022Z Has data issue: false hasContentIssue false

Mid-late Devonian calcified marine algae and cyanobacteria, South China

Published online by Cambridge University Press:  20 May 2016

Qi Feng
Affiliation:
Key Laboratory of Biogeology and Environmental Geology of Ministry of Education of China, and State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China,
Yi-Ming Gong
Affiliation:
Key Laboratory of Biogeology and Environmental Geology of Ministry of Education of China, and State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China, Key Laboratory of Biogenic Traces and Sedimentary Minerals of Henan Province, Henan Polytechnic University, Jiaozuo, Henan, 454003, China,
Robert Riding
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410, USA,

Abstract

Givetian, Frasnian and Famennian limestones from southern China contain microfossils generally regarded as calcified algae and cyanobacteria. These are present in 61 out of 253 sampled horizons in four sections from three widely spaced localities in Guangxi and southern Guizhou. Three of the sections sampled are Givetian-Frasnian-Famennian; one section is Frasnian-Famennian. They include reef and non-reef carbonates of shallow marine platform facies. The following taxa are identified with differing degrees of confidence, and placed in algae, cyanobacteria or microproblematica. Algae: Halysis, ‘solenoporaceans’, Vermiporella. Cyanobacteria: Bevocastria, Girvanella, Hedstroemia, Subtifloria. Microproblematica: ?Chabakovia, Garwoodia, ?Issinella, Izhella, Paraepiphyton, Rothpletzella, Shuguria, ?Stenophycus, Tharama, Wetheredella. As a whole, the abundance of algae, cyanobacteria and microproblematica increases by 34% from Givetian to Frasnian, and declines by 63% in the Famennian. This secular pattern of marked Famennian decrease does not support recognition of them as “disaster forms” in the immediate aftermath of late Frasnian extinction. Nonetheless, their survival into the Famennian could indicate tolerance of environmental stress, independence of changes in food supply, morphologic plasticity, and ability to occupy a range of habitats and depths. Uncertainties concerning the affinities of the problematic taxa hinder assessment of their significance.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, N., Ezaki, Y., and Pickett, J. W. 2007. Interrelations between framework-building and encrusting skeletal organisms and microbes: more refined growth history of Lower Devonian bindstones. Sedimentology, 54:89105.CrossRefGoogle Scholar
Antropov, I. A. 1950. New species of foraminifers in the Upper Devonian of some regions of the eastern Russian Platform. Izvestiya Kazanskovo Filial, Akademii nauk SSSR, Geol. Inst. Izvestiya, Seriya Geologia, Kazan, 1:2133, 3 pls. (In Russian)Google Scholar
Antropov, I. A. 1955. Blue-green algae from the Devonian of the central region of the eastern Russian Platform. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta imeni V.I. Ulyanova-Lenina, Trudy Ova Estestvoispytatelei, 115, 8:4153, 2 pls.Google Scholar
Arp, G., Reimer, A., and Reitner, J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292:17011704.CrossRefGoogle ScholarPubMed
Awramik, S. M. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science, 174:825827.CrossRefGoogle ScholarPubMed
Babcock, J. A. 1986. The puzzle of alga-like Problematica, or rummaging around in the algal wastebasket., p. 1226. In Hoffman, A. and Nitecki, M. H. (eds.). Problematic fossil taxa. Oxford University Press, New York.Google Scholar
Bai, S. L., Bai, Z. Q., Ma, X. P., Wang, D. R., and Sun, Y. L. 1994. Devonian events and biostratigraphy of South China. Peking University Press, Beijing. 303 p. (In Chinese)Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Berger, S. and Kaever, M. J. 1992. Dasycladales. An Illustrated Monograph of a Fascinating Algal Order. G. Thieme Verlag, Stuttgart, 247 p.Google Scholar
Bian, L. and Liu, Z. 1999. Discovery of Late Ordovician algal fossils of Oedogoniales in Jiangxi Province, China. Acta Palaeontologica Sinica, 38:4649, 1 pl. (In Chinese, with English abstract)Google Scholar
Bogush, O. I., Ivanova, R. M., and Luchinina, V. A. 1990. Izvestkovye vodorosli verkhnego famena i nizhnego karbona Urala i Sibiri. Trudy IGIG SO AN SSSR (Nauka, Novosibirsk), 745:1160, 32 pls.Google Scholar
Bond, D., Wignall, P. B., and Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141:173193.CrossRefGoogle Scholar
Borzi, A. 1895. Studi algologici. Saggio di recherché sulla biologia delle alghe. A. Reber, Palermo. Fasc., 2 pp. ivii, 119–378, pls. 10–31.Google Scholar
Bourque, P. A., Mamet, B., and Roux, A. 1981. Algues calcaires siluriennes du Synclinorium de la Baie des Chaleurs, Québec, Canada. Revue de Micropaléontologie, 24: 83126.Google Scholar
Brooke, C. and Riding, R. 1998. Ordovician and Silurian coralline red algae. Lethaia, 31:185195.CrossRefGoogle Scholar
Brown, T. C. and Kenig, F. 2004. Water column structure during deposition of Middle Devonian-Lower Mississippian black and green/gray shales of the Illinois and Michigan basins: a biomarker approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 215:5985.CrossRefGoogle Scholar
Chen, D. and Tucker, M. E. 2003. The Frasnian-Famennian mass extinction: insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 193:87111.CrossRefGoogle Scholar
Chen, D.Z., Chen, Q. Y., and Jiang, M. S. 1995. Carbon isotopic compositions and evolution in the Devonian marine carbonate rocks. Lithofacies Paleogeography, Chengdu, 15:2228. (In Chinese, with English abstract)Google Scholar
Chen, D. Z., Tucker, M. E., Zhu, J. Q., and Jiang, M. S. 2002. Carbonate platform evolution: from a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China). Sedimentology, 49:737764.CrossRefGoogle Scholar
Chow, N., George, A. D., and Trinajstic, K. M. 2004. Tectonic control on development of a Frasnian-Famennian (Late Devonian) palaeokarst surface, Canning Basin reef complexes, northwestern Australia. Australian Journal of Earth Sciences, 51:911917.CrossRefGoogle Scholar
Chuvashov, B. and Riding, R. 1984. Principal floras of Palaeozoic marine calcareous algae. Palaeontology, 27:487500.Google Scholar
Chuvashov, B. I., Luchinina, V. A., Shuysky, V. P., Shaykin, I. M., Berchenko, O. I., Ishchenko, A. A., Saltovskaya, V. D., and Shirshova, D. I. 1987. Iskopaemye izvestkovye vodorosli (morfologiya, sistematika, metody izucheniya). Trudy Institutom Geologii i Geofizikii, Sibirskoy Otdeleniya, Akademii Nauk SSSR, Novosibirsk, 674:1225.Google Scholar
Chuvashov, B. J., Shuysky, V. P., and Ivanova, R. M. 1993. Stratigraphical and facies complexes of the Paleozoic calcareous algae of the Urals. In Barattolo, F., De Castro, P., and Parente, M. (eds.). Studies on fossil benthic algae. Boll. Soc. Paleont. Ital., Special Volume, 1:93119.Google Scholar
Cohen, Y. and Gurevitz, M. 2006. The Cyanobacteria-ecology, physiology and molecular genetics, p. 10741098. In Dworkin, M., et al. (eds.). The Prokaryotes, volume 4: bacteria: firmicutes, cyanobacteria. Springer, New York.CrossRefGoogle Scholar
Copper, P. 1976. The cyanophyte Wetheredella in Ordovician reefs and off-reef sediments. Lethaia, 9:273281.CrossRefGoogle Scholar
Copper, P. 1994. Ancient reef ecosystem expansion and collapse. Coral Reefs, 13:311.CrossRefGoogle Scholar
Copper, P. 2002. Reef development at the Frasnian/Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 181:2765.CrossRefGoogle Scholar
Ding, W. J. 1947. Geological Research Report 191321930. Central Geological Research Bureau, Beijing. (In Chinese)Google Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and Mcghee, G. R. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology, 28:675678.2.0.CO;2>CrossRefGoogle Scholar
Dybowski, W. 1877. Die Chaetetiden der ostbaltischen Silur-Formation. Russisch-Kaiserliche Mineralogische Gesellschaft zu St. Petersburg Verhandlungen, Series 2, 14(1878):1134, pls 1–4.Google Scholar
Elias, M. K. 1950. Paleozoic Ptychocladia and related Foraminifera. Journal of Paleontology, 24:287306.Google Scholar
Fenton, C. L. 1943. A new Devonian alga from Western Australia. American Midland Naturalist, 30:112.CrossRefGoogle Scholar
Fischer, A. G. 1965. Fossils, early life, and atmospheric history. Proceedings of the National Academy of Sciences, USA, 53:12051215.CrossRefGoogle Scholar
Flügel, E. and Kiessling, W. 2002. Patterns of Phanerozoic reef crises, p. 691733. In Kiessling, W., Flügel, E., and Golonka, J. (eds.). Phanerozoic reef patterns. SEPM Special Publication 72.CrossRefGoogle Scholar
Foslie, M. 1909. Algologisker notiser, VI. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1909, (2):163.Google Scholar
Fournie, D. 1967. Les Porostromata du Paleozoïque. Etude bibliographique. Bulletin du Centre de Recherches, Pau-SNPA, 1(1):2141.Google Scholar
Gao, L. D. 1981. Late Devonian and early Carboniferous miospore zones from southeastern Guizhou and the boundary of the Devonian. Geology of Guizhou, Guiyang, 8:5969. (In Chinese, with English abstract)Google Scholar
Garrett, P. 1970. Phanerozoic stromatolites: noncompetetive ecologic restriction by grazing and burrowing animals. Science, 169:171173.CrossRefGoogle Scholar
Garwood, E. J. 1931. The Tuedian beds of northern Cumberland and Roxburghshire east of the Liddel Water. Quarterly Journal of the Geological Society of London, 87(1):97157, pls 7–16.CrossRefGoogle Scholar
George, A. D. 1999. Deep-water stromatolites, Canning Basin, northwestern Australia. Palaios, 14:493505.CrossRefGoogle Scholar
George, A. D. and Chow, N. 2002. The depositional record of the Frasnian/Famennian boundary interval in a fore-reef succession, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 181:347374.CrossRefGoogle Scholar
Gong, Y., Li, B., Si, Y., and Wu, Y. 2002. Late Devonian red tides and mass extinction. Chinese Science Bulletin, 47:11381144.CrossRefGoogle Scholar
Gong, Y. M., Xu, R., Tang, Z. D., Si, Y. L., and Li, B. H. 2005. The Upper Devonian orbital cyclostratigraphy and numerical dating conodont zones from Guangxi, South China. Science in China, Series D Earth Sciences, 48:3241.CrossRefGoogle Scholar
Grotzinger, J. P. 1990. Geochemical model for Proterozoic stromatolite decline. American Journal of Science, 290-A:80103.Google Scholar
Guizhou Bureau Of Geology and Mineral Resources. 1987. Regional geology of Guizhou Province. Beijing Geological Publishing House, Beijing. (In Chinese, with English abstract)Google Scholar
Høeg, O. E. 1932. Ordovician algae from the Trondheim area. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo I Matematisknaturvidenskapelig Klasse, 4:6396, pls 1–11.Google Scholar
Hofmann, H. J. 1975. Stratiform Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure. American Journal of Science, 275:11211132.CrossRefGoogle Scholar
Ischenko, A. A. and Radionova, E. P. 1981. On the morphological characteristics and systematic position of Wetheredella Wood, 1948. Questions of Micropalaeontology, 24:140151. Academy of Science of the USSR. (In Russian)Google Scholar
Ji, Q., 1989a. On the Frasnian-Famennian mass extinction event in South China. Courier Forschungsinstitut Senckenberg, 117:275301.Google Scholar
Ji, Q., 1989b. On the Frasnian conodont biostratigraphy in the Guilin area of Guangxi, South China. Courier Forschungsinstitut Senckenberg, 117:303319.Google Scholar
Ji, Q., 1994. On the Frasnian-Famennian extinction event in South China as viewed in the light of conodont study. Professional papers of stratigraphy and palaeontology, 24:79107, Geological Publishing House, Beijing. (In Chinese)Google Scholar
Jiang, D. Y., Ding, G., and Bai, S. L. 2000. Conodont Biostratigraphy across the Givetian-Frasnian Boundary (Devonian) of Liujing, Change this to: Guangxi. Journal of Stratigraphy, Nanjing, 24:195200. (In Chinese, with English abstract)Google Scholar
Johnson, H. M. 1966. Silurian Girvanella from the Welsh Borderland. Palaeontology, 9:4863, pls. 6–12.Google Scholar
Johnson, J. H. 1961. Review of Ordovician algae. Colorado School of Mines Quarterly, 56(2):vvii, 1–101.Google Scholar
Johnson, J. H. 1964. Lower Devonian algae and encrusting Foraminifera from New South Wales. Journal of Paleontology, 38:98108.Google Scholar
Johnson, J. H. and Konishi, K. 1959. A review of Silurian (Gotlandian) algae. Colorado School of Mines Quarterly, 54(1):1114.Google Scholar
Kah, L. C. and Riding, R. 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35:799802.CrossRefGoogle Scholar
Kempe, S. and Kazmierczak, J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de la Institut Océanographique (Monaco), 13:61117.Google Scholar
Kerans, C. 1985. Petrology of Devonian and Carboniferous carbonates of the Canning and Bonaparte basins. Western Australian Mining and Petroleum Research Institute Report, 12, 302 pp. Unpublished.Google Scholar
Kershaw, S., Zhang, T., and Lan, G. 1999. A microbialite crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 146:118.CrossRefGoogle Scholar
Korde, K. B. 1950. On the morphology of the Dasycladaceae of the northern Urals. Doklady Akademii nauk SSSR, 73(3):569571. (In Russian)Google Scholar
Korde, K. B. 1973. Vodorosli kembriya (Cambrian algae). Academy of Sciences of the U.S.S.R., Transactions of the Palaeontological Institute, 139:1350, Nauka, Moscow.Google Scholar
Kozlowski, R. and Kazmierczak, J. 1968. On two Ordovician calcareous algae. Acta Palaeontologica Polonica, 13:325346, 11 pls.Google Scholar
Kuang, G. D., Zhao, M. T., Tao, Y. B., Su, Y. B., Wang, S. T., and Huang, Y. Q. 1989. The Standard Devonian Section of China: Liujing Section of Guangxi. China University of Geosciences Press, Wuhan, p. 1145. (In Chinese with an English summary)Google Scholar
Lewis, L. A. and Mccourt, R. M. 2004. Green algae and the origin of land plants. American Journal of Botany, 91:15351556.CrossRefGoogle ScholarPubMed
Li, X. and Liu, G. X. 2002. Structural characteristics of Devonian cover in Liujing, Guangxi. Guangxi Geology, 15:710. Nanning. (In Chinese, with English abstract)Google Scholar
Li, Z. L. and Wang, C. Y. 1991. New geological time evidence of Guilin Formation. Journal of Stratigraphy, Nanjing, 15:153154. (In Chinese)Google Scholar
Liao, W. H. 2002. Biotic recovery from the Late Devonian F-F mass extinction event in China. Science in China Series D, Earth Sciences, 45:380384.CrossRefGoogle Scholar
Liao, W. H. 2003. Devonian biostratigraphy of Dushan, Southern Guizhou and its coral extinction events. Acta Palaeontologica Sinica, Nanjing, 42(3):417427. (In Chinese, with English abstract)Google Scholar
Ma, X. P., Wang, C. Y., Racki, G., and Racka, M. 2008. Facies and geochemistry across the Early-Middle Frasnian transition (Late Devonian) on South China carbonate shelf: comparison with the Polish reference succession. Palaeogeography, Palaeoclimatology, Palaeoecology, 269: 130151.CrossRefGoogle Scholar
Mamet, B. and Roux, A. 1975a. Jansaella ridingii, nouveau genre d'Algue? dans le Devonien de l'Alberta. Canadian Journal of Earth Sciences, 12:14801484.CrossRefGoogle Scholar
Mamet, B. and Roux, A. 1975b. Algues dévoniennes et carbonifères de la Téthys occidentale (troisième partie). Revue de micropaléontologie, 18:134187.Google Scholar
Mamet, B., Roux, A., Lapointe, M., and Gauthier, L. 1992. Algues ordoviciennes et siluriennes de l'Ile d'Anticosti (Québec, Canada). Revue de Micropaléontologie, 35:211248.Google Scholar
Mamet, B. and Villa, E. 1995. A revision of the dasycladale alga Uraloporella (Chlorophycophyta, Upper Paleozoic, Asturias, Spain). Revista Española de Paleontología, No. homenaje a Guillermo Colom: 4854.Google Scholar
Maslov, V. P. 1956. Iskopaemye izvestkovye vodorosli SSSR. Trudy Instituta geologicheskikh nauk, 160:1302. Akademii nauk SSSR, Moscow.Google Scholar
Mattox, K. R. and Stewart, K. D. 1984. Classification of the green algae: a concept based on comparative cytology, p. 2972. In Irvine, D. E. G. and John, D. M. (eds.). The systematics of green algae. Academic Press, London.Google Scholar
May, A. 1992. Die Kalkalgen-Flora des Ober-Eifeliums und Unter-Givetiums (Devon) des nordwestlichen Sauerlandes (Rhieisches Schiefergebirge). Palaeontographica B, 228:128, 5 pls.Google Scholar
Mcghee, G. R. Jr. 1988. The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology, 14:250257.CrossRefGoogle Scholar
Miretskaya, N. M. 1988. Calcareous algae and palaeobiocoenoses of the Mamontov Stage of the Middle Devonian in Salair, p. 9397, pl. 33. In Dubatolov, V. N. and Moskalenko, T. A. (eds.). Calcareous algae and stromatolites; systematics, biostratigraphy, facies analysis. USSR Academy of Sciences, Siberian Branch, Institute of Geology and Geophysics, Novosibirsk, “Nauka.” (In Russian)Google Scholar
Mountjoy, E. W. and Riding, R. 1981. Foreslope stromatoporoid-renalcid bioherm with evidence of early cementation, Devonian Ancient Wall reef complex, Rocky Mountains. Sedimentology, 28:299319.CrossRefGoogle Scholar
Murphy, A. E., Sageman, B. B., and Hollander, D. J. 2000. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: a mechanism for the Late Devonian mass extinction. Geology, 28:427430.2.0.CO;2>CrossRefGoogle Scholar
Nicholson, H. A. and Etheridge, R. Jr. 1878. A monograph of the Silurian fossils of the Girvan District in Ayrshire with special reference to those contained in the “Gray Collection.” Vol. I, Fasciculus 1 (Rhizopoda, Actinozoa, Trilobita). W. Blackwood and Sons, Edinburgh, 135 pp.Google Scholar
Philippi, R. 1837. Beweis dass die Nulliporen Pflanzen sind. Archiven der Naturgesellschaft, 3:387393, pl. 9, figs. 2–6.Google Scholar
Playford, P. E. 1984. Platform-margin and marginal-slope relationships in Devonian reef complexes of the Canning Basin, p. 189214. In Purcell, P. G. (ed.). The Canning Basin, WA. Proceedings of the Geological Society of Australia/Petroleum Exploration Society of Australia Symposium, Perth.Google Scholar
Playford, P. E., Cockbain, A. E., Druce, E. C., and Wray, J. L. 1976. Devonian stromatolites from the Canning Basin, Western Australia, p. 543563. In Walter, M. R. (ed.). Stromatolites. Developments in Sedimentology 20, Elsevier, Amsterdam.CrossRefGoogle Scholar
Playford, P. E., Cockbain, A. E., Hocking, R. M., and Wallace, M. W. 2001. Novel paleoecology of a postextinction reef: Famennian (Late Devonian) of the Canning Basin, northwestern Australia: comment. Geology, 29:1155–1116.2.0.CO;2>CrossRefGoogle Scholar
Pratt, B. R. 1984. Epiphyton and Renalcis – diagenetic microfossils from calcification of coccoid blue-green algae. Journal of Sedimentary Petrology, 54:948971.Google Scholar
Rabenhorst, L. 1863. Kryptogamen-Flora von Sachsen, der Ober-Lausitz, Thuringen und Nordbohmen. Abteilung I. E. Krummer, Leipzig, 653 p.Google Scholar
Racki, G. 2005. Towards understanding Late Devonian global events: few answers, many questions, p. 199224. In Over, J., Morrow, J., and Wignall, P. B. (eds.). Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach. Developments in Paleontology and stratigraphy 20. Elsevier, Amsterdam.Google Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science, 215:15011503.CrossRefGoogle ScholarPubMed
Reitlinger, E. A. 1954. Devonian foraminifers from some sections of the eastern part of the Russian Platform. Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologo-Razvedochnogo Instituta (VNI-GRI), Paleontol., sbornik, 1:5281, pls. 17–22. (In Russian)Google Scholar
Riding, R. 1977. Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20:3346.Google Scholar
Riding, R. 1991a. Cambrian calcareous cyanobacteria and algae, p. 305334. In Riding, R. (ed.). Calcareous algae and stromatolites. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Riding, R. 1991b. Calcified cyanobacteria, p. 5587. In Riding, R. (ed.). Calcareous algae and stromatolites. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Riding, R. 1993. Phanerozoic patterns of marine CaCO3 precipitation. Naturwissenschaften, 80:513516.CrossRefGoogle Scholar
Riding, R. 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185:229238.CrossRefGoogle Scholar
Riding, R. and Braga, J. C. 2005. Halysis Høeg, 1932—an Ordovician coralline red alga? Journal of Paleontology, 79:835841.CrossRefGoogle Scholar
Riding, R. and Fan, J. 2001. Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China. Palaeontology, 44:783810.CrossRefGoogle Scholar
Riding, R. and Jansa, L. F. 1974. Uraloporella Korde in the Devonian of Alberta. Canadian Journal of Earth Sciences, 11:14141426.CrossRefGoogle Scholar
Riding, R. and Liang, L. 2005. Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 01115.CrossRefGoogle Scholar
Riding, R. and Soja, C. M. 1993. Silurian calcareous algae, Cyanobacteria, and Microproblematica from the Alexander terrane, Alaska. Journal of Paleontology, 67:710728.CrossRefGoogle Scholar
Riding, R. and Voronova, L. 1985. Morphological groups and series in Cambrian calcareous algae, p. 5678. In Toomey, D. F. and Nitecki, M. H. (eds.). Paleoalgology: contemporary research and applications. Springer, Berlin.CrossRefGoogle Scholar
Riding, R. and Watts, N. 1981. Silurian algal reef crest in Gotland. Naturwissenschaften, 68:9192.CrossRefGoogle Scholar
Riding, R. and Wray, J. L. 1972. Note on the ?algal genera Epiphyton, Paraepiphyton, Tharama, and Chabakovia. Journal of Paleontology, 46:918919.Google Scholar
Rothpletz, A. 1908. Ueber Algen und Hydrozoen im Silur von Gotland und Oesel. Kungl. Svenska Vetenskapsakademiens Handlingar, 43(5), 25 p., 6 pls.Google Scholar
Rothpletz, A. 1913. Die Kalkalgen, Spongiostromen und einige andere Fossilien aus dem Obersilur Gottlands. Sveriges Geologiska Undersökning Ca, 10, 57 p., 10 pls, map.Google Scholar
Schubert, J. K. and Bottjer, D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 20:883886.2.3.CO;2>CrossRefGoogle Scholar
Schubert, J. K. and Bottjer, D. J. 1995. Aftermath of the Permian-Triassic mass extinction event; paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116:139.CrossRefGoogle Scholar
Sheehan, P. M. and Harris, M. T. 2004. Microbialite resurgence after the Late Ordovician extinction. Nature, 430:7578.CrossRefGoogle ScholarPubMed
Shen, J. W. and Webb, G. E. 2004a. Famennian (Upper Devonian) calcimicrobial (Renalcis) reef at Miaomen, Guilin, Guangxi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 204:373394.CrossRefGoogle Scholar
Shen, J. W. and Webb, G. E. 2004b. Famennian (Upper Devonian) stromatolite reefs at Shatang, Guilin, Guangxi, South China. Sedimentary Geology, 170:6384.CrossRefGoogle Scholar
Shen, J. W. and Yu, C. M. 1996. Stratigraphic boundaries on Devonian carbonate platform and reef complexes in Guilin, Guangxi. Journal of Stratigraphy, Nanjing, 20:18. (In Chinese, with English abstract)Google Scholar
Shen, J. W., Yu, C. M., and Bao, H. M. 1997. A Late Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China. Facies, 37:195210.Google Scholar
Shen, J. W. and Zhang, S. L. 1994. Evolution of the Devonian carbonate platform in Guilin, China. Sedimentary Facies and Palaeogeography, Chengdu, 14:110. (In Chinese, with English abstract)Google Scholar
Shen, J. W., Teng, J. B., and Pedoja, K. 2005. Middle and Late Devonian microbial carbonates, reefs and mounds in Guilin, South China and their sequence stratigraphic, paleoenvironmental and paleoclimatic significance. Science in China, Series D, Earth Sciences, 48:19001912.CrossRefGoogle Scholar
Shen, J. W., Webb, G. E., and Jell, J. S. 2008. Platform margins, reef facies, and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China. Earth Science Reviews, 88:3359.CrossRefGoogle Scholar
Silva, P. C. and Johansen, H. W. 1986. A reappraisal of the order Corallinales (Rhodophyta). British Phycological Journal, 21:245254.CrossRefGoogle Scholar
Stephens, N. P. and Sumner, D. Y. 2002. Renalcids as fossilized biofilm clusters. Palaios, 17:225236.2.0.CO;2>CrossRefGoogle Scholar
Stephens, N. P. and Sumner, D. Y. 2003. Famennian microbial reef facies, Napier and Oscar ranges, Canning Basin, Western Australia. Sedimentology, 50:12831302.CrossRefGoogle Scholar
Stolley, E. 1893. Ueber silurische Siphoneen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1893(2):135146, pls 7, 8.Google Scholar
Tao, Y. B., Kuang, G. D., and Zhao, M. T., 1986. A comprehensive paleoecologic study on paleobiocoenosis of Devonian in Liujing, Guangxi. Geology of Guangxi, Nanning, 1:4552. (In Chinese, with English abstract)Google Scholar
Tappan, H. 1980. The paleobiology of plant protists. Freeman, San Francisco, USA, 1028 p.Google Scholar
Ting, C. S., Rocap, G., King, J., and Chisholm, S. W. 2002. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology, 10:134142.CrossRefGoogle ScholarPubMed
Tsien, H. H., Hou, H. F., Zhou, W. L., Wu, Y., Yin, D. W., Dai, Q. Y., and Liu, W. J. 1988. Devonian reef development and paleogeographic evolution in South China, p. 619633. In McMillan, N. J., Embry, A. F., and Glass, D. J. (eds.). Devonian of the world. Canadian Society of Petroleum Geologists Memoir 14, volume 1.Google Scholar
Vologdin, A. G. 1939. Arkheotsiaty i vodorosli srednego kembriya Yuzhnogo Urala. Problemy paleontologii, 5:210245, Moscow University Publishing House, Moscow.Google Scholar
Wang, K. L. 1987. On the Devonian-Carboniferous boundary based on foraminiferal fauna from South China. Acta Palaeontologica Sinica, Nanjing, 4:161173. (In Chinese, with English abstract)Google Scholar
Wang, Y. 2001. On outcrop sequence stratigraphy and sea level changes of Devonian in Dushan, South Guizhou. Guizhou Geology, Guiyang, 18:154162. (In Chinese, with English abstract)Google Scholar
Wang, Y. 2004. Some trace fossils after the Frasnian-Famennian extinction in the Dushan area, southern Guizhou Province, China. Acta Palaeontologica Sinica, 43:132141 (In Chinese, English abstract).Google Scholar
Wang, Y. and Chen, H. D. 1999. New data on the Frasnian-Famennian event boundary in the Dushan area, South Guizhou. Journal of Stratigraphy, Nanjing, 23:2630. (In Chinese, with English abstract)Google Scholar
Wang, Y. and Wang, X. L. 1996. Trace fossils near Devonian-Carboniferous boundary section in Dushan, Guizhou. Journal of Stratigraphy, Nanjing, 20:285290. (In Chinese with English abstract)Google Scholar
Wang, Y., Shen, J. W., and Zhou, Z. C. 1997. Ichnofacies and sequence stratigraphy of the lower-middle Devonian in Dushan county, southern Guizhou. Acta Micropalaeontologica Sinica, Nanjing, 13:203213. (In Chinese, with English abstract)Google Scholar
Wang, Y., Wang, X. L., and Shi, X. Y. 2006. Pioneer organisms after F-F mass extinction in Dushan region, Guizhou Province, and their significance in establishing new ecosystem. Science in China, Series D, Earth Sciences, 49:449460.CrossRefGoogle Scholar
Webb, G. E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology, 43:947971.CrossRefGoogle Scholar
Webb, G. E. 2002. Latest Devonian and Earl Carboniferous reefs: depressed reef building after the middle Paleozoic collapse, p. 239269. In Kiessling, W., Flügel, E., and Golonka, J. (eds.). Phanerozoic reef patterns, SEPM Special Publication 72.Google Scholar
Wethered, E. 1886. On the structure and organisms of the Lower Limestone Shales, Carboniferous Limestone and Upper Limestones of the Forest of Dean. Geological Magazine New Series, Decade 3, Volume 3:529540, 2 pls.CrossRefGoogle Scholar
Wethered, E. 1887. Mitcheldeania Nicholsoni. A new genus, from the Lower Carboniferous Shales of the Forest of Dean. Proceedings of the Cotteswold Naturalists Club, 9:77.Google Scholar
Wethered, E. 1893. On the microscopic structure of the Wenlock Limestone, with remarks on the formation generally. Quarterly Journal of the Geological Society, London, 49:236248.CrossRefGoogle Scholar
Wettstein, R. R. 1901. Handbuch der systematischen Botanik, Vol. 1. Deuticke, Leipzig, 201 p.Google Scholar
Whalen, M. T., Day, J., Eberli, G. P., and Homewood, P. W. 2002. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 181:127151.CrossRefGoogle Scholar
Wood, A. 1941. The Lower Carboniferous calcareous algae Mitcheldeania Wethered and Garwoodia, gen. nov. Proceedings of the Geologists' Association, 52:216226.CrossRefGoogle Scholar
Wood, A. 1948. “Sphaerocodium,” a misinterpreted fossil from the Wenlock Limestone. Proceedings of the Geologists' Association, 59:922, pls. 2–5.CrossRefGoogle Scholar
Wood, A. 1964. A new dasycladacean alga, Nanopora, from the Lower Carboniferous of England and Kazakhstan. Palaeontology, 7:181185.Google Scholar
Wood, R. 1998. Novel reef fabrics of the Devonian Canning Basin, Western Australia. Sedimentary Geology, 121:149156.CrossRefGoogle Scholar
Wood, R. 2000. Novel paleoecology of a postextinction reef: Famennian (Late Devonian) of the Canning Basin, northwestern Australia. Geology, 28:987990.2.0.CO;2>CrossRefGoogle Scholar
Wray, J. L. 1967. Upper Devonian calcareous algae from the Canning Basin, Western Australia. Professional Contributions of the Colorado School of Mines 3, 76 p.Google Scholar
Wu, Y. 1997. The establishment of the system, series and stage boundaries and correlation of biostratigraphic and chronostratigraphic boundaries in the Devonian strata in South China. Lithofacies Palaeogeography, Beijing, 17:2939. (In Chinese, with English abstract)Google Scholar
Wu, Y., Gong, Y. M., and Li, D. Q. 1994. Correlation of sequence stratigraphy to lithostratigraphy and chronostratigraphy of Devonian in South China. Earth Science Journal of China Universiity of Geoscienoes, Wuhan, 19:565574. (In Chinese, with English abstract)Google Scholar
Xu, B., Gu, Z. Y., Hu, B., and Li, Z. L. 2004. The pattern of variations in carbon isotope of the Frasnian-Famennian limestone sequences in Guangxi, Southern China. Acta Sedimentologica Sinica, Lanzhou, 22: 603608. (In Chinese, with English abstract)Google Scholar
Xu, R., Gong, Y. M., and Tang, Z. D. 2006. Blooming of bacteria and algae: possible killer of Devonian Frasnian-Famennian Mass Extinction? Earth Science Journal of China University of Geosciences, Wuhan, 31:787797. (In Chinese, with English abstract)Google Scholar
Zhang, Z., Du, Y. S., Gong, Y. M., Huang, H. W., Zeng, X. W., Li, S. S., and Ou, Y. K. 2007. Transformation from Devonian Givetian carbonate platform to Famennian bacteria-algae ecosystem in Litang isolated platform, Guangxi, and its significance. Earth Science Journal of China University of Geosciences, Wuhan, 32:811818. (In Chinese, with English abstract)Google Scholar
Zhao, X., Allen, M. B., Whitham, A. G., and Price, S. P. 1996. Riftrelated Devonian sedimentation and basin development in South China. Journal of Southeast Asian Earth Sciences, 14:3752.Google Scholar
Zhong, K., Wu, Y., and Yin, B. A. 1992. Devonian of Guangxi. China University of Geosciences Press, Wuhan, 384 p. (In Chinese)Google Scholar