Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T12:18:24.561Z Has data issue: false hasContentIssue false

The Middle Eocene Belosaepia ungula (Cephalopoda: Coleoida) from Texas: structure, ontogeny and function

Published online by Cambridge University Press:  14 July 2015

Thomas E. Yancey
Affiliation:
1Department of Geology & Geophysics, Texas A&M University, College Station, 77843
Christopher L. Garvie
Affiliation:
2Texas Natural Science Center, University of Texas at Austin, Austin, TX 78705
Mary Wicksten
Affiliation:
3Department of Biology, Texas A&M University, College Station, 77843

Abstract

The ontogeny of Belosaepia ungula Gabb, 1860 from the Crockett Formation (Bartonian stage, Eocene) of Texas is documented for growth from embryo to old age. During the last stage of life, much skeletal resorption occurred, resulting in a major change in form of the skeleton. the animal produced a large skeleton (to 180 mm in length and 50 mm in diameter) with endogastric coiling, oblique septa and a very large siphuncle. the skeleton has a guard with a solid posterior prong, a posteroventral corona plate and a noded dorsal shield. the ventral margin of the skeleton consists of a thin flattened deck containing strongly recurved septa, conotheca and a secondary prismatic shell layer. New terms are defined for features of the skeleton not previously described. the microstructure of the ventral deck and the presence of a rod structure between the prong and callus are described for the first time. Chamberlets similar to those in living Sepia cuttlebones are present between closely spaced septa and they vary from walled units on lateral margins to pillar form in mid-ventor. the siphuncle is secondarily thickened within the dorsal interior, producing a siphuncle band. the skeleton was produced by a deep-bodied animal of demersal life habits. the species B. uncinata, B. harrisi and B. alabamensis voltzi proposed by Palmer (1937) are synonymised with B. ungula. the species B. veatchii and B. saccaria of Palmer (1937) are considered to be valid species, but B. alabamensis proposed by Palmer (1937) is synonymised with B. veatchii. Descriptions of belosaepiid species must be based only on specimens of adult size that have not been affected by resorption.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. E. 1968. New species of Sepiida (Mollusca, Cephalopoda) from the Eocene of the Gulf Coast. Tulane Studies in Geology, 6:3337.Google Scholar
Anderson, R., Mather, J., and Steele, C.. 2004. Burying and associated behaviors of Rossia pacifica (Cephalopoda: Sepiolidae). Vie et Milieu, 54(1):1319.Google Scholar
Bandel, K. and Boletzky, S. V.. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger, 21:313354.Google Scholar
Berry, E. W. 1922. An American Spirulirostra. American Journal of Science, 5th series, 3:327334.CrossRefGoogle Scholar
Bettencourt, V. and Guerra, A.. 2001. Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Marine Biology, 139:327334.Google Scholar
Blainville, H. M. D. de. 1825. Manuel de Malacologie et de conchyliologie. Paris, 1:622.Google Scholar
Boyle, P. R. 1983. Cephalopod life cycles, Volume 2, Comparative reviews. Academic Press, London, 441 p.Google Scholar
Bronn, H. G. 1838. Lethea Geognostica, oder Abbildungen und Beschreibung der für die Gibirgs-Formationen bezeichnendsten Versteinerungen. Bd. II:7691346, 48 pls.Google Scholar
Cossmann, A. E. M. 1907. Catalogue illustré des coquilles fossiles de l'Eocène des environs de Paris. Mémoires Societé Malacologique de Belgique, Appendix 4, 41:285286.Google Scholar
Curry, D. 1955. The occurrence of the dibranchiate cephalopods Vasseuria and Belosaepiella in the English Eocene, with notes on their structure. Malacological Society of London, 31:111123.Google Scholar
Dauphin, T. 1984. Microstructures des Céphalopodes. IV Le “rostre” de Belosepia (Dibranchiata). Paläontologische Zeitschrifte, 58:99117.CrossRefGoogle Scholar
Denton, E. J. 1974. On buoyancy and the lives of modern and fossil cephalopods. Proceedings of the Royal Society, Series B. Biological Sciences, London, 185:273299.Google Scholar
Denton, E. J. and Gilpin-Brown, J. B.. 1961a. The buoyancy of the cuttlefish, Sepia officinalis (L.). Journal of the Marine Biological Association, U. K., 41:319342.CrossRefGoogle Scholar
Denton, E. J. and Gilpin-Brown, J. B.. 1961b. The effects of light on the buoyancy of the cuttlefish. Journal of the Marine Biological Association, U. K., 41:343349.CrossRefGoogle Scholar
Denton, E. J. and Gilpin-Brown, J. B.. 1961c. The distribution of gas and liquid within the cuttlebone. Journal of the Marine Biological Association, U. K., 41:365381.CrossRefGoogle Scholar
Dixon, F. 1850. The geology and fossils of the Tertiary and Cretaceous formations of Sussex. Longman, Brown, Green and Longmans, London, 422 p., 50 pls.Google Scholar
Doguzhaeva, L. A. 1996. Two Early Cretaceous spirulid coleoids of the north-western Caucasus: their shell ultrastructure and evolutionary implications. Palaeontology, 39:681707.Google Scholar
Edwards, F. E. and Wood, S. V.. 1877. A monograph of the Eocene Cephalopoda and univalves of England [part of the series, A monograph of the Mollusca from the Eocene formations of England]. Paleontographical Society, 1:156, pls. 1–9.Google Scholar
Engeser, T. 1990. Phylogeny of the fossil coleoid Cephalopoda (Mollusca). Berliner Geowissenschaftliche Abhandlungen A, 124:123191.Google Scholar
Gabb, W. M. 1860. Descriptions of new species of American Tertiary and Cretaceous fossils. Academy of Natural Sciences, Philadelphia, Journal, 2nd series, 4:375406, pls. 67–69.Google Scholar
Garvie, C. L. 1996. The molluscan macrofauna of the Reklaw Formation, Marquez Member (Eocene: lower Claibornian) in Texas. Bulletins of American Paleontology, 111(352), 177 p.Google Scholar
Haas, W. 2003. Trends in the evolution of the Decabranchia. Berliner Paläobiologie, Abhandlungen, 3:113129.Google Scholar
Hewitt, R. A. and Jagt, J. W. M.. 1999. Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs. Acta Palaeontographica Polonica, 44(3):305326.Google Scholar
Jeletzky, J. A. 1966. Comparative morphology, phylogeny and classification of fossil Coleoidea. University of Kansas Paleontological Contributions, Mollusca Article 7, 162 p.Google Scholar
Jeletzky, J. A. 1969. New or poorly understood Tertiary sepiids from southeastern United States and Mexico. University of Kansas Paleontological Contributions, Paper 41, 39 p.Google Scholar
Kröger, B., Klug, C., and Mapes, R.. 2005. Soft-tissue attachments in orthocerid and bactritid cephalopods from the Early and Middle Devonian of Germany and Morocco. Acta Palaeontologia Polonica, 50:329342.Google Scholar
Landman, N. H., Arnold, J. M., and Mutvei, H.. 1989. Description of the embryonic shell of Nautilus belauensis (Cephalopoda). American Museum Novitates, no. 2960, p. 116.Google Scholar
Meyer, J. C. 1993. Un nouveau Coleoide Sepioide, Ceratisepia elongata nov. gen., nov. sp. du Paleocene inferieur (Danien) du Vigny. Implications taxonomiques et phylogénétiques. In Elmi, S., Mangold, C., and Aleras, Y. (eds.), Geobios, Memoir 15:287304.Google Scholar
Monks, N. and Wells, S.. 2000. A new record of the Eocene Spirulirostra anomala (Mollusca: Cephalopoda) and its relationship to modern Spirula. Tertiary Research, 20:4752.Google Scholar
Mutvei, H., Arnold, J. M., and Landman, N. H.. 1993. Muscles and attachment of the body to the shell in embryos and adults of Nautilus belauensis (Cephalopoda). American Museum Novitates, 3059:115.Google Scholar
Naef, A. 1921. Fauna and Flora of the Bay of Naples. Cephalopoda (systematics). Zoological Station, Naples, Monograph 35, Vol. 1. Pt. 1. (English translation by A. Mercado of Fauna e Flora del Golfo di Napoli - Cephalopoda. Israel Program for Scientific Translations Ltd., Jerusalem, 1972, 917 p., 19 pl.; IPST cat. #5110/2)Google Scholar
Naef, A. 1922. Die fossilen Tintenfische Eine palaeozoologische monographie (Fossil Cephalopoda - A paleozoological monograph). G. Fisher, Jena, 322 p.Google Scholar
Newton, R. B. and Harris, G. F.. 1894. A revision of the British Eocene Cephalopoda. Malacological Society of London, Proceedings, 1:119131.Google Scholar
Palmer, K. V. W. 1937. The Claibornian Scaphopoda, Gastropoda and Dibranchiate Cephalopoda of the southern United States. Bulletins of American Paleontology, 7:548 p.Google Scholar
Schöne, B. R., Rodland, D. L., Fiebig, J., Oschmann, W., Goodwin, D., Flessa, K. W., and Dettman, D.. 2006. Reliability of multitaxon, multiproxy reconstructions of environmental conditions from accretionary biogenic skeletons. Journal of Geology, 114:267285.CrossRefGoogle Scholar
Sherrard, K. M. 2000. Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biological Bulletin, 198:404414.CrossRefGoogle ScholarPubMed
Voltz, M. 1830. Observations sur les Belemnites. Mémoires de la Société d'Histoire Naturelle de Strasbourg. Tome 1:172, pls. 1–8.Google Scholar
Weaver, P. G. and Ciampaglio, C. N.. 2003. A new genus of belosaepiid (Coleoidea) from the Castle Hayne Limestone (Eocene) of southeastern North Carolina. Journal of Paleontology, 77:11031106.2.0.CO;2>CrossRefGoogle Scholar
Williams, A. B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, D.C., 550 p.Google Scholar
Yancey, T. E., Elsik, W. C., and Sancay, R. H.. 2003. The palynological record of Late Eocene climate change, northwest Gulf of Mexico. In Prothero, D. R., Ivany, L. C., and Nesbitt, E. A. (eds.), From Greenhouse to Icehouse - the marine Eocene-Oligocene transition. Columbia University Press, New York, New York, 252268.Google Scholar