Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:37:44.031Z Has data issue: false hasContentIssue false

The Middle Eocene bee faunas of Eckfeld and Messel, Germany (Hymenoptera: Apoidea)

Published online by Cambridge University Press:  20 May 2016

Torsten Wappler
Affiliation:
Institut für Geologie und Paläontologie, Abteilung für Paläontologie, Technische Universität Clausthal, Leibnizstraße 10, D-38678 Clausthal-Zellerfeld, Germany
Michael S. Engel
Affiliation:
Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, Snow Hall, 1460 Jayhawk Boulevard, University of Kansas, Lawrence 66045-7523

Abstract

The Middle Eocene (Lutetian) bee faunas of Eckfeld and Messel, Germany are revised. In addition to the previously known Electrapis electrapoides (Lutz), five additional species are recognized. Four new species of the Electrapini (Apidae: Apinae) are described: Electrapis micheneri Wappler and Engel, E. prolata Engel and Wappler, Protobombus pristinus Wappler and Engel, and P. messelensis Engel and Wappler. In addition, the new genus Pygomelissa Engel and Wappler is proposed for Pygomelissa lutetia Engel and Wappler new species, which cannot presently be classified into any tribe of the Apidae. The tribe Megachilini (Megachilidae: Megachilinae) is also recorded from Eckfeld but in the absence of any body fossil. Megachilines include the leaf-cutter bees (Megachile) and from the occurrence of the distinctive semicircular damage they produce in leaves, we conclude that such bees were also present in the fauna. The bee fauna is compared with that of the contemporaneous Baltic amber. As with Baltic amber, the majority of bee specimens are from the advanced eusocial lineages of the corbiculate Apinae. Lastly, comments are made on the phylogenetic and paleobiological significance of the faunas.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

3

To whom correspondence should be addressed.

References

Berry, E. W. 1916. The Lower Eocene floras of southeastern North America. United States Geological Survey Professional Papers, 91:1469.Google Scholar
Berry, E. W. 1931. An insect-cut leaf from the Lower Eocene. American Journal of Science, 21:301304.CrossRefGoogle Scholar
Brooks, H. K. 1955. Healed wounds and galls on fossil leaves from the Wilcox deposits (Eocene) of western Tennessee. Psyche, 62:19.CrossRefGoogle Scholar
Cockerell, T. D. A. 1908a. Descriptions and records of bees—XX. Annals and Magazine of Natural History, series 8, 2:323334.CrossRefGoogle Scholar
Cockerell, T. D. A. 1908b. A fossil leaf-cutting bee. Canadian Entomologist, 40:3132.CrossRefGoogle Scholar
Cockerell, T. D. A. 1910. A Tertiary leaf-cutting bee. Nature, 82:429.CrossRefGoogle Scholar
Elliott, D. K., and Nations, J. D. 1998. Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos, 5:243253.CrossRefGoogle Scholar
Engel, M. S. 1998a. Fossil honey bees and evolution in the genus Apis (Hymenoptera: Apidae). Apidologie, 29:265281.CrossRefGoogle Scholar
Engel, M. S. 1998b. A new species of the Baltic amber bee genus Electrapis (Hymenoptera: Apidae). Journal of Hymenoptera Research, 7:94101.Google Scholar
Engel, M. S. 1999a. Megachile glaesaria, the first megachilid bee fossil from amber (Hymenoptera: Megachilidae). American Museum Novitates, 3276:113.Google Scholar
Engel, M. S. 1999b. The first fossil Euglossa and phylogeny of the orchid bees (Hymenoptera: Apidae; Euglossini). American Museum Novitates, 3272:114.Google Scholar
Engel, M. S. 1999c. The taxonomy of Recent and fossil honey bees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research, 8:165196.Google Scholar
Engel, M. S. 2000a. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates, 3296:111.2.0.CO;2>CrossRefGoogle Scholar
Engel, M. S. 2000b. Fossils and phylogeny: a paleontological perspective on social bee evolution, p. 217224. In Bitondi, M. M. G. and Hartfelder, K. (eds.), Anais do IV Encontro Sobre Abelhas. Universidade de São Paulo, Ribeirão Preto, xxix+[1]+363 p.Google Scholar
Engel, M. S. 2000c. Classification of the bee tribe Augochlorini (Hymenoptera: Halictidae). Bulletin of the American Museum of Natural History, 250:189.2.0.CO;2>CrossRefGoogle Scholar
Engel, M. S. 2001a. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History, 259:1192.2.0.CO;2>CrossRefGoogle Scholar
Engel, M. S. 2001b. Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity. Proceedings of the National Academy of Sciences, U.S.A., 98:16611664.CrossRefGoogle Scholar
Engel, M. S. 2001c. The first large carpenter bee from the Tertiary of North America, with a consideration of the geological history of Xylocopinae (Hymenoptera: Apidae). Transactions of the American Entomological Society, 127:245254.Google Scholar
Engel, M. S. 2002. Halictine bees from the Eocene-Oligocene boundary of Florissant, Colorado (Hymenoptera: Halictidae). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 225:251273.CrossRefGoogle Scholar
Engel, M. S., and Archibald, S. B. 2003. An Early Eocene bee from Quilchena, British Columbia (Hymenoptera: Halictidae). Canadian Entomologist, 135:6369.CrossRefGoogle Scholar
Fischer, C. 1999. Grobklastika im mitteleozänen Eckfeld Maar (Südwesteifel): Sedimentologische und petrographische Analyse. Mainzer Naturwissenschaftliches Archiv, 37:2154.Google Scholar
Franzen, J. L. 1993. Das biostratigraphische Alter der Fossillagerstätte Eckfelder Maar bei Manderscheid (Eifel). Mainzer Naturwissenschaftliches Archiv, 31:201214.Google Scholar
Genise, J. F., and Bown, T. M. 1996. Uruguay Roselli 1938 and Rosellichnus, n. ichnogenus: two ichnogenera for clusters of fossil bee cells. Ichnos, 4:199217.CrossRefGoogle Scholar
Genise, J. F., Sciutto, J. C., Laza, J. H., Gonzalez, M. G., and Bellosi, E. S. 2002. Fossil bee nests, coleopteran pupal chambers and tuffaceous paleosols from the Late Cretaceous Laguna Palacios Formation, Central Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 177:215235.CrossRefGoogle Scholar
Grimaldi, D. 1999. The co-radiation of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86:373406.CrossRefGoogle Scholar
Grimaldi, D., and Cumming, J. 1999. Brachyceran Diptera in Cretaceous ambers and Mesozoic diversification of the Eremoneura. Bulletin of the American Museum of Natural History, 239:1124.Google Scholar
Harms, F.-J. 2002. Steine erzählen Geschichte(n): Ursache für die Entstehung des Messel-Sees gefunden. Natur und Museum, 132:14.Google Scholar
Hennig, W. 1981. Insect Phylogeny. Wiley and Sons, New York, 514 p.Google Scholar
Hörnschemeyer, T. 1994. Ein fossiler Tenebrionidae Ceropria? messelense n. sp. (Coleoptera: Tenebrionidae: Diaperinae) aus dem Mitteleozän der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg, 170:7583.Google Scholar
Hörnschemeyer, T., and Wedmann, S. 1994. Fossile Prachtkäfer (Coleoptera: Buprestidae: Buprestinae) aus dem Mitteleozän der Grube Messel bei Darmstadt, Teil 1. Courier Forschungsinstitut Senckenberg, 170:85136.Google Scholar
Latreille, P. A. 1802. Histoire Naturelle des Fourmis, et Recueil de Mémoires et d'Observations sur les Abeilles, les Araignées, les Faucheurs, et Autres Insectes. Crapelet, Paris, xvi+445 p., 12 pls.Google Scholar
Lewis, S. E. 1994. Evidence of leaf-cutting bee damage from the Republic sites (Middle Eocene) of Washington. Journal of Paleontology, 68:172173.CrossRefGoogle Scholar
Liebig, V., and Gruber, G. 2000. The Messel drillings of 1980: redescription and interpretation (Grube Messel, southern Hesse, Germany). Terra Nostra, 2000/6:254258.Google Scholar
Ludwig, R. 1877. Fossile Crocodiliden aus der Tertiärformation der Mainzer Beckens. Palaeontographica Supplement, 3:152.Google Scholar
Lutz, H. 1990. Systematische und palökologische Untersuchungen an Insekten aus dem Mittel-Eozän der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg, 124:1165.Google Scholar
Lutz, H. 1992. Giant ants and other rarities: the insect fauna, p. 5367. In Schaal, S. and Ziegler, W. (eds.), Messel—An Insight into the History of Life and of the Earth. Claredon Press, Oxford, 322 p.Google Scholar
Lutz, H. 1993a. Eckfeldapis electrapoides nov. gen. n. sp., eine “Honigbiene” aus dem Mittel-Eozan des “Eckfelder Maares” bei Manderscheid/Eifel, Deutschland (Hymenoptera: Apidae, Apinae). Mainzer Naturwissenschaftliches Archiv, 31:177199.Google Scholar
Lutz, H. 1993b. Grabungskampagne im “Eckfelder Maar”: 1992. Rheinische Naturforschende Gesellschaft, Mitteilungen, 14:5359.Google Scholar
Lutz, H. 1997. Taphozönosen terrestrischer Insekten in aquatischen Sedimenten—Ein Beitrag zur Rekonstruktion des Paläoenvironments. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 203:173210.CrossRefGoogle Scholar
Lutz, H. 1998. Zur Korrelation von Fazies und Fossilführung im Eckfelder Maar (Mittel-Eozän, Vulkaneifel, Deutschland). Mainzer Naturwissenschaftliches Archiv, 36:3946.Google Scholar
Lutz, H. 2000. Correlation of facies and fossil contents in meromictic lakes—the example Eckfeld Maar. Terra Nostra, 2000/6:301308.Google Scholar
Lutz, H., and Neuffer, F.-O. 2001. A climatic archive with hide and hair. German Research, 2001:811.3.0.CO;2-5>CrossRefGoogle Scholar
Lutz, H., Frankenhäuser, H., and Neuffer, F.-O. 1998. Fossilfundstätte Eckfelder Maar—Archiv eines mitteleozänen Lebensraumes in der Eifel. Landessammlung für Naturkunde Rheinland Pfalz, Mainz, 51 p.Google Scholar
Lutz, H., Neuffer, F.-O., Harms, F.-J., Schaal, S., Micklich, N., Gruber, G., Schweigert, G., and Lorenz, V. 2000. Tertiary maars as fossil deposits: Eckfeld, Messel, Randeck, Höwenegg, Öhnigen. Mainzer Naturwissenschaftliches Archiv, Beiheft, 24:125160.Google Scholar
Mertz, D. F., Swisher, C. C., Franzen, J. L., Neuffer, F.-O., and Lutz, H. 2000. Numerical dating of the Eckfeld maar fossil site, Eifel, Germany: a calibration mark for the Eocene time scale. Naturwissenschaften, 87:270274.CrossRefGoogle ScholarPubMed
Michener, C. D., and Grimaldi, D. A. 1988. A Trigona from Late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates, 2917:110.Google Scholar
Mingram, J. 1998. Laminated Eocene maar-like sediments from Eckfeld (Eifel region, Germany) and their short-term periodicities. Palaeogeography, Palaeoclimatology, Palaeoecology, 140:289305.CrossRefGoogle Scholar
Neuffer, F.-O., Gruber, G., Lutz, H., and Frankenhäuser, H. 1996. Das Eckfeld Maar—Zeuge tropischen Lebens in der Eifel. Landessammlung für Naturkunde Rheinland Pfalz, Mainz, 102 p.Google Scholar
Pirrung, B. M. 1992. Geologische und geophysikalische Untersuchungen am tertiären “Eckfeld Maar”, Südwesteifel. Mainzer Naturwissenschaftliches Archiv, 30:321.Google Scholar
Pirrung, B. M. 1998. Zur Entstehung isolierter alttertiärer Seesedimente in zentraleuropäischen Vulkanfeldern. Mainzer Naturwissenschaftliches Archiv, Beiheft, 20:1117.Google Scholar
Pirrung, M. G., Büchel, G., and Jacoby, W. 2001. The Tertiary volcanic basins of Eckfeld, Enspel and Messel (Germany). Zeitschrift der Deutschen Geologischen Gesellschaft, 152:2759.CrossRefGoogle Scholar
Schaal, S., and Ziegler, W. 1992. Messel—An Insight into the History of Life and of the Earth. Clarendon Press, Oxford, 322 p.Google Scholar
Schultz, T. R., Engel, M. S., and Ascher, J. S. 2001. Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 74:1016.Google Scholar
Tröster, G. 1991. Eine neue Gattung der Elateridae (Insecta: Coleoptera) Macropunctum gen. n. aus der Messel-Formation des unteren Mittel-Eozän der Fundstelle Messel. Courier Forschungsinstitut Senckenberg, 139:99117.Google Scholar
Tröster, G. 1992. Fossile Insekten aus den mitteleozänen Tonsteinen der Grube Messel bei Darmstadt. Mitteilungen des Internationalen Entomologischen Vereins, 17:191208.Google Scholar
Tröster, G. 1993a. Wasserkäfer und andere Raritäten—Neue Coleoptera-Funde aus dem mitteleozänen Tonsteinen der Grube Messel bei Darmstadt. Kaupia, Darmstädter Beiträge zur Naturgeschichte, 2:145154.Google Scholar
Tröster, G. 1993b. Zwei neue mitteleuropäische Arten der Gattung Tenomerga Neboiss 1984 aus dem Mitteleozän der Grube Messel und des Eckfelder Maares (Coleoptera: Archostemata: Cupedidae). Mainzer Naturwissenschaftliches Archiv, 31:169176.Google Scholar
Tröster, G. 1994a. Fossile Elateridae (Insecta: Coleoptera) aus dem Unteren Mitteleozän (Lutetium) der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg, 170:1164.Google Scholar
Tröster, G. 1994b. Neue Arten der Gattung Macropunctum (Insecta, Coleoptera, Elateridae) aus der Ölschieferfazies der mitteleozänen Messelformation der Grube Messel bei Darmstadt. Paläontologische Zeitschrift, 68:145162.CrossRefGoogle Scholar
Wedmann, S., and Hörnschemeyer, T. 1994. Fossile Prachtkäfer (Coleoptera: Buprestidae: Buprestinae und Agrilinae) aus dem Mitteleozän der Grube Messel bei Darmstadt, Teil 2. Courier Forschungsinstitut Senckenberg, 170:137187.Google Scholar
Weitschat, W. 1997. Bitterfelder Bernstein—Ein eozäner Bernstein auf miozäner Lagerstätte. Metalla, Bochum, 66:7184.Google Scholar
Wilde, V., and Frankenhäuser, H. 1998. The Middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Review of Paleobotany and Palynology, 101:728.CrossRefGoogle Scholar
Wilde, V., Frankenhäuser, H., and Lutz, H. 1993. Algenreste aus den mitteleozänen Sedimenten des Eckfelder Maares bei Manderscheid in der Eifel. Mainzer Naturwissenschaftliches Archiv, 31:127148.Google Scholar
Zeuner, F. E., and Manning, F. J. 1976. A monograph on fossil bees (Hymenoptera: Apoidea). Bulletin of the British Museum (Natural History), Geology, 27:149268.Google Scholar