Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-20T17:25:52.225Z Has data issue: false hasContentIssue false

Microstructure and Biogeochemistry of the Organically Preserved Ediacaran Metazoan Sabellidites

Published online by Cambridge University Press:  15 October 2015

Małgorzata Moczydłowska
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden,
Frances Westall
Affiliation:
Centre de Biophysique Moléculaire CNRS, Rue Charles Sardon, 45071 Orléans cedex 2, France, ;
Frédéric Foucher
Affiliation:
Centre de Biophysique Moléculaire CNRS, Rue Charles Sardon, 45071 Orléans cedex 2, France, ;

Abstract

Metazoans (multicellular animals) evolved during the Ediacaran Period as shown by the record of their imprints, carbonaceous compressions, trace fossils, and organic bodies and skeletal fossils. Initial evolutionary experiments produced unusual bodies that are poorly understood or conceived of as non-metazoan. It is accepted that sponges, ctenophorans, cnidarians, placozoans, and bilaterians were members of the Ediacaran fauna, many of which have uncertain affinities. The fossil Sabellidites cambriensis Yanishevsky, 1926, derived from the terminal Ediacaran strata, is the earliest known organically preserved animal that belonged to a newly evolving fauna, which replaced the Ediacara-type metazoans. Morphologically simple soft-bodied tubular fossils, such as S. cambriensis, and biomineralized, as contemporaneous Sinotubulites sp., are not easy to recognize phylogenetically because many unrelated organisms developed encasing tubes independently. Therefore, in addition to morphologic information, evidence derived from the microstructure of the organic wall and its biochemistry may be vital to resolving fossil origins and phylogenetic relationships. Here we present morphological, microstructural and biogeochemical studies on S. cambriensis using various microscopic and spectroscopic techniques, which provide new evidence that supports its siboglinid, annelidan affinity. The late Ediacaran age of Sabellidites fossil constrains the minimum age of siboglinids and the timing of the divergence of including them annelids by fossil record and this could be tested using molecular clock estimates. The fine microstructure of the organic tube in Sabellidites is multi-layered and has discrete layers composed of differently orientated and perfectly shaped fibers embedded in an amorphous matrix. The highly ordered and specific pattern of fiber alignment (i.e., the texture of organic matter) is similar to that of representatives of the family Siboglinidae. The biogeochemistry of the organic matter that comprised the tube, which was inferred from its properties, composition, and microstructure, is consistent with chitin and proteins as in siboglinids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, B. and Templier, J. 2000. Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry, 54:369380.Google Scholar
Antcliffe, J. B. and Brasier, M. D. 2008. Charnia at 50: Developmental models for Ediacaran fronds. Palaeontology, 51:1126.CrossRefGoogle Scholar
Blair, J. E. 2009. Animals (Metazoa), p. 223230. In Hedges, S. B. and Kumar, S. (eds.), The Timetere of Life. Oxford University Press, Oxford.Google Scholar
Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: Selective preservation and diagenesis. Philosophical Transactions of the Royal Society, London, Ser. B, 354:717.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth Planetary Sciences, 31:275301.Google Scholar
Blackwell, J. 1973. The polysaccharides, p. 464513. In Walton, A. G. and Blackwell, J. (eds.), Biopolymers. Academic Press, New York/London.Google Scholar
Brasier, M. and Antcliffe, J. 2004. Decoding the Ediacaran enigma. Science, 305:11151117.Google Scholar
Budd, G. E. 2008. The earliest fossil record of the animals and its significance. Philosophical Transactions of the Royal Society, London, Ser. B, 363:14251434.Google Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J. 1995. Secular distribution of Burgess-Shale-type preservation. Lethaia, 28:113.CrossRefGoogle Scholar
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543.CrossRefGoogle Scholar
Butterfield, N. J. and Harvey, T. H. P. 2012. Small carbonaceous fossils (SCFs): A new measure of early Paleozoic paleobiology. Geology, 40:7174.CrossRefGoogle Scholar
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2011. Morphology and palaeoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China. Precambrian Research, 191:4657.Google Scholar
Chen, J. I. and Zhou, G. Q. 1997. Biology of the Chengjiang fauna. Bulletin of the National Museum of Natural History, 10:11105.Google Scholar
Chen, Z., Bengtson, S., Zhou, C-M., Hua, H., and Yue, Z. 2008. Tube structure and original composition of Sinotubulites: Shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia, 41:3745.Google Scholar
Chevaldonné, P., Jollivert, D., Desruyères, D., Lutz, R. A., and Vrijenhoek, R. C. 2002. Sister-species of eastern Pacific hydrothermal vent worms (Ampharetidae, Alvinellidae, Vestimentifera) provide new mitochondrial COI clock calibration. Cahiers de Biologie Marine, Brest, 43:367370.Google Scholar
Cody, G. D., Gupta, N. S., Briggs, D. G., Kilcoyne, A. L. D., Summons, R. E., Kenig, F., Plotnick, R. E., and Scott, A. 2011. Molecular signature of chitin-protein complex in Paleozoic. Geology, 39:255258.Google Scholar
Cohen, Y. 1984. Oxygenic photosynthesis, anoxygenic photosynthesis and sulfate reduction in cyanobacterial mats, p. 435441. In Klug, M. J. and Reddy, C. A. (eds.), Current Perspective in Microbial Ecology. American Society for Microbiology, Washington, D. C. Google Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydłowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the late Precambrian of east Poland. Journal of the Geological Society London, 152:599611.Google Scholar
Conway Morris, S. and Peel, J. S. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontological Polonica, 53:137148.Google Scholar
Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T. 2010. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176:110.Google Scholar
Dando, P. R., Southward, A. J., and Southward, E. C. 1992. Shipwrecked tube worms. Nature, 356:667.Google Scholar
Des Marais, D. J., D'Amilio, E., Farmer, J. D., Jørgensen, B. B., Palmisano, A. C., and Pierson, B. K. 1992. Case study of a modern microbial mat-building community: The submerged cyanobacterial mats of Gurrero Negro, Baja California Sur, Mexico, p. 325333. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press.Google Scholar
Dong, L., Xiao, S., Shen, B., Yuan, X., Yan, X., and Peng, Y. 2008. Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:138161.Google Scholar
Droser, M., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: The unabridged edition. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131147.Google Scholar
Ehrlich, H., Maldonado, M., Spindler, K.-D., Eckert, C., Hanke, T., Born, R., Goebel, C., Simon, P., Heinemann, S., and Worch, H. 2007. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 308B: 347356.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011 . The Cambrian conundrum: Early divergence and late ecological success in the early history of animals. Science, 334:10911097.Google Scholar
Erwin, D. H. and Valentine, J. W. 2013. The Cambrian Explosion: The Construction of Animal Biodiversity. Roberts and Company, Greenwood Village, Colorado, 406 p.Google Scholar
Farmer, J., Vidal, G., Moczydłowska, M., Strauss, H., Ahlberg, P., and Siedlecka, A. 1992. Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geological Magazine, 129:181195.Google Scholar
Fedonkin, M. A. 1990. Systematic Description of Vendian Metazoa, p. 71120. In Sokolov, B. S. and Iwanowski, A. B. (eds.), The Vendian System. Vol. 1. Paleontology, Springer-Verlag.Google Scholar
Fedonkin, M. A. 1994. Vendian body fossils and trace fossils, p. 370388. In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium No. 84. Columbia University Press, New York.Google Scholar
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007. The Rise of Animals Evolution and Diversification of the Kingdom Animalia. The Johns Hopkins University Press, 326 p.Google Scholar
Fedonkin, M. A. and Vickers-Rich, P. 2007. The White Sea's windswept coasts, p. 115148. In Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. The Rise of Animals Evolution and Diversification of the Kingdom Animalia. The Johns Hopkins University Press, 326 p.Google Scholar
Felbeck, H., 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, 213:336338.Google Scholar
Felitsyn, S. B. and Pshenitchnova, T. G. 1992. Gold content and thermal history of late Vendian sedimentary organic matter. Transactions of the U.S.S.R. Academy of Sciences, 325:374377.Google Scholar
Felitsyn, S. B., Vidal, G., and Moczydłowska, M. 1998. Trace elements and Sr and C isotopic signatures in late Neoproterozoic and earliest Cambrian sedimentary organic matter from siliciclastic successions in the Eat European Platform. Geological Magazine, 135:537551.CrossRefGoogle Scholar
Gail, F. and Hunt, S. 1986. Tubes of deep sea hydrothermal vent worms Riftia pachyptila (Vestimentifera) and Alvinella pompejana (Annelida). Marine Ecology Progress Series, 34:267274.Google Scholar
Gaill, F., Persson, F. J., Sugiyama, J., Vuong, R., and Chanzy, H. 1992 a. The chitin system in the tubes of deep sea hydrothermal vent worms. Journal of Structural Biology, 109:116128.Google Scholar
Gaill, F., Voss-Foucart, M.-F., Gerday, C., Compere, P., and Goffinet, G. 1992 b. Chitin and protein contents in the tubes of vestimentiferans from hydrothermal vents, p. 232236. In Brinne, C. J., Sanford, P. A., and Zizakis, J. P. (eds.), Chitin and Chitosan. Elsevier, Advances in Applied Science.Google Scholar
Gaines, R. R., Briggs, D. E. G., and Zhao, Y. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758.Google Scholar
Gardiner, S. L. and Jones, M. L. 1993. Vestimentifera. Chapter 9, p. 371460. In Harrison, F. W. and Rice, M. E. (eds.), Microscopic Anatomy of Invertebrates, Volume 12: Onychophora, Chilipoda, and Lesser Protostomata, Wiley-Liss, Inc., New York.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.Google Scholar
Gehling, J. G., Droser, M. L., Jensen, S., and Runnegar, B. N. 2005. Ediacaran organisms: Relating form to function, p. 4366. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Proceedings of a symposium honoring Adolph Seilacher for his contributions to paleontology in celebration of his 80th birthday. Peabody Museum of Natural History, Yale University, New Haven.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.Google Scholar
Gnilovskaya, M. B. 1990. Vendotaenids—Vendian Metaphytes, p. 138147. In Sokolov, B. S. and Iwanowski, A. B. (eds.), The Vendian System. Vol. 1. Paleontology, Springer-Verlag.Google Scholar
Goedert, J. L., Peckmann, J., and Reitner, J. 2000. Worm tubes in an allochthonous cold-seep carbonate from lower Oligocene rocks of Western Washington. Journal of Paleontology, 74:992999.2.0.CO;2>CrossRefGoogle Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290-A:261294.Google Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: Facies versus biogeography and evolution. Paleobiology, 30:203221.Google Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36:803806.Google Scholar
Grazhdankin, D. V. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology, 45:5778.Google Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.Google Scholar
Gupta, N. S. and Briggs, D. E. G. 2011. Taphonomy of animal organic skeletons through time, p. 199221. In Allison, P. A. and Bottjer, D. J. (eds.), Taphonomy, Process and Bias Through Time. Springer.Google Scholar
Halanych, K. M. 2005. Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): A review, p. 297307. In Bartolomaeus, T. and Pursche, G. (eds.), Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Hydrobiologi 535–536, Springer, 388 p.Google Scholar
Harvey, T. H. P., Ortega-Hernández, J., Lin, J.-P., Zhao, Y., and Butterfield, N. J. 2012. Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China. Acta Palaeontologica Polonica, 57:423436.Google Scholar
Hass, A., Little, C. T. S., Sahling, H., Bohrmann, G., Himmler, T., and Peckmann, J. 2009. Mineralization of vestimentiferan tubes at methane seeps on the Congo deep-sea fan. Deep-Sea Research, 56:283293.Google Scholar
Himmler, T., Freiwald, A., Stollhofen, H., and Peckmann, J. 2008. Late Carboniferous hydrocarbon-seep carbonates from the glaciomarine Dwyka Group, southern Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology, 257:185197.Google Scholar
Hou, X., Aldridge, R. J., Bergström, J., Siveter, D. J., and Feng, X. 2004. The Cambrian Fossils of Chengjiang, China—the Flowering of Early Animal Life. Blackwell Science Ltd., Oxford, 233 p.Google Scholar
Hua, H., Chen, Z., and Yuan, X. 2007. The advent of mineralized skeletons in Neoproterozoic Metazoa—new fossil evidence from the Gaojiashan Fauna. Geological Journal, 42:263279.Google Scholar
Hua, H., Pratt, B. R., and Zhang, L. 2003. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18:454459.Google Scholar
Huldtgren, T., Cunningham, J., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699.CrossRefGoogle ScholarPubMed
Ivantsov, A. Yu. 1990. Novye dannye po ultrastructure sabelliditov (Pogonophora?). (New data on the ultrastructure of sabelliditids (Pogonophora?), Paleontologitcheskiy Zhurnal 4, 125128. (In Russian) Google Scholar
Jørgensen, B. B. and Cohen, Y. 1977. Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mts. Limnology and Oceanography, 22:657666.Google Scholar
Korkutis, V. 1981. Late Precambrian and early Cambrian in the East European Platform. Precambrian Research, 15:7594.Google Scholar
Laflamme, M., Flude, L. I., and Narbonne, G. M. 2012. Ecologic tiering and the evolution of a stem: The oldest stemmed frond from the Ediacaran of Newfoundland, Canada. Journal of Paleontology, 86:193200.Google Scholar
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., and Briggs, D. E. G. 2011. Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44:203213.CrossRefGoogle Scholar
Lee, R. E. 2008. Phycology. Cambridge University Press, Cambridge, 547 p.Google Scholar
Little, C. T. S. and Vrijenhoek, R. C. 2008. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution, 18:582588.CrossRefGoogle Scholar
Liu, P., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. 2008. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51:339366.Google Scholar
Mapstone, N. B. and McIlroy, D. 2006. Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, Central Australia. Precambrian Research, 149:126148.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 288:841845.Google Scholar
Moczydłowska, M. 1991 Acritarch biostratigraphy of the lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils and Strata 29, 126 p.Google Scholar
Moczydłowska, M. 2008 a. The Ediacaran microbiota and the survival of Snowball Earth Conditions, Precambrian Research, 167:115.Google Scholar
Moczydłowska, M. 2008 b. New records of late Ediacaran microbiota from Poland. Precambrian Research, 167:7192.Google Scholar
Moczydłowska, M. 2010. Life cycle of early Cambrian microalgae from the Skiagia-plexus acritarchs. Journal of Paleontology, 84:216230.Google Scholar
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.Google Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: The oldest complex Ediacaran fossils. Geology, 31:2730.Google Scholar
Narbonne, G. M, Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503523.Google Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from South Africa. Journal of Paleontology, 71:953967.Google Scholar
Noffke, N. 2009. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews, 96:173180.Google Scholar
Noffke, N., Hazen, R., and Nhleko, N. 2003. Earth's earliest microbial mats in a siliciclastic marine environment (2.9 GA Mozaan Group, South Africa). Geology, 31:673676.Google Scholar
Noffke, N., Knoll, A. H., and Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the upper Neoproterozoic Nama Group, Namibia. Palaios, 17:533544.Google Scholar
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology 36:855858.Google Scholar
Paskeviciene, L. T. 1986. On the stratigraphy of the Rovno Stage in north-western part of the East European Platform, p. 127137. In Pirrus, E. A. (ed.), Vendian and Cambrian Facies and Stratigraphy of the Western Part of the East-European Platform, Academy of Sciences of the Estonian S.S.R., Institute of Geology, Tallin. (In Russian) Google Scholar
Pecoits, E., Konhauser, K. O., Aubet, N. R., Heaman, L. M., Veroslavsky, G., Stern, R. A., and Gingras, M. K. 2012. Bilaterian burrows and grazing behavior at >585 million years ago. Science, 336:16931696.Google Scholar
Peckmann, J., Little, C. T. S., Gill, F., and Reitner, J. 2005. Worm tube fossils from the Hollard Mound hydrocarbon-seep deposit, Middle Devonian, Morocco: Palaeozoic seep-related vestimentiferans? Palaeogeography, Palaeoclimatoloy, Palaeoecology, 227:242257.CrossRefGoogle Scholar
Peters, K. E. and Moldowan, J. M. 1993. The Biomarker Guide Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, p. 5458.Google Scholar
Peters, K. E., Walters, C. C., and Moldowan, J. M. 2005. The Biomarker Guide. Volume 1. Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, 471 p.Google Scholar
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. American Journal of Sciences, 301:683726.Google Scholar
Pierson, B. K., Bauld, J., Castenholtz, R. W., D'amelio, E., Des Marais, D. J., Farmer, J. D., Grotzinger, J. P., Jørgensen, B. B., Nelson, D. C., Palmisano, A. C., Schopf, J. W., Summons, R. E., Walter, M. R., and Ward, D. M. 1992. Modern mat-building microbial communities: A key to the interpretation of Proterozoic stromatolitic communities, p. 247342. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press.Google Scholar
Raabe, D., Romano, P., Al-Sawalmih, A., Sachs, C., Servos, G., and Hartwig, H. G. 2005 a. Mesostructure of the exoskeleton of the lobster Homarus americanus . Materials Research Society Symposium Proceedings 874, L5.2.15.2.6.Google Scholar
Raabe, D., Romano, P., Sachs, C., Al-Sawalmih, A., Brokmeir, H.-G., Yi, S.-B., Servos, G., and Hartwig, H. G. 2005 b. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. Journal of Crystal Growth, 283:17.Google Scholar
Raff, E. C., Schollaert, K., Nelson, D. E., Donoghue, P. C. J., Thomas, C-W., Turner, F. R., Stein, B. D., Dong, X., Bengtson, S., Huldtgren, T., Stampanoni, M., and Chongyu, Y. 2008. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Sciences U.S.A., 105:1936019365.CrossRefGoogle ScholarPubMed
Roberts, G. A. F. 1992. Chitin Chemistry. MacMillan and Co., London, 368 p.Google Scholar
Rouse, G. and Fauchald, K. 1997. Cladistics and the polychaetes. Zoologica Scripta, 26:139204.Google Scholar
Rozanov, A. Yu. and Łydka, K. 1987. Palaeogeography and Lithology of the Vendian and Cambrian of the Western East European Platform. Publishing House Wydawnictwa Geologiczne Warsaw, 114 p.Google Scholar
Ruiz-Herrera, J., González-Prieto, J. M., and Ruiz-Medrano, R. 2002. Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Research, 1:247256.Google Scholar
Saito, Y., Okano, T., Chazy, H., and Sugiyama, J. 1995. Structural study of α chitin from grasping spines of the arrow worm (Sagitta spp.). Journal of Structural Biology, 114:218228.Google Scholar
Sappenfield, A., Droser, M. L., and Gehling, J. G. 2011. Problematica, trace fossils, and tubes within the Ediacaran Member (South Australia): Redefining the Ediacaran trace fossils record one tube at a time. Journal of Paleontology, 85:256265.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Czaja, A. D., and Wdowiak, T. J. 2005. Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology, 5:333371.Google Scholar
Seilacher, A. 2007. The nature of vendobionts, p. 387397. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London, Special Publication 286.Google Scholar
Sepkoski, J. J. Jr. 1992. Proterozoic–early Cambrian diversification of metazoans and Metaphytes, p. 553561. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. A Multidisciplinary Approach. Cambridge University Press, Cambridge.Google Scholar
Shillito, B., Lechaire, J. P., and Gaill, F. 1993. Microvilli-like structures secreting chitin Crystallites. Journal of Structural Biology, 111:5967.Google Scholar
Shillito, B., Lübbering, B., Lechaire, J. P., Childress, J. J., and Gaill, F. 1995. Chitin localization in the tube secretion system of a repressurized deep-sea tube worm. Journal of Structural Biology, 114:6775.Google Scholar
Sokolov, B. S. 1965. Drevnejshie otlozheniya rannego kembriya i sabelliditidy. [The oldest early Cambrian deposits and sabelliditids]. In Vsesoyuznyj simposium po paleontologii dokembriya i rannego kembriya 25–30 oktyabrya 1965 (tezisy dokladov), 7892. Institut Geologiya i Geofizika SO AN SSSR, Novosibirsk.Google Scholar
Sokolov, B. S. and Fedonkin, M. A. 1990. The Vendian System. Vol. 2. Regional Geology. Springer-Verlag, 273 p.Google Scholar
Sokolov, B. S. and Iwanowski, A. B. 1990. The Vendian System. Vol. 1. Paleontology. Springer-Verlag, 383 p.Google Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Laevin, L. A., and Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian readiation of animals. Proceedings of the National Academy of Sciences, U.S.A., 110:1344613451.Google Scholar
Stankiewicz, B. A., Van Bergen, P. F., Duncan, I. J., Carter, J. F., Briggs, D. E. G., and Evershed, R. P. 1996. Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis-gas chromatography and pyrolysis-gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 10:17471757.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., Flannery, M. B., and Wuttke, M. 1997 a. Preservation of chitin in 25-million-years-old fossils. Science, 276:15411543.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., and Duncan, I. J. 1997 b. Chemical preservation of insect cuticle from the Pleistocene asphalt deposits of California, U.S.A. Geochimica et Cosmochimica Acta, 61:22472252.Google Scholar
Stankiewicz, B. A., Mastalerz, M., Hof, C. H. J., Bierstedt, A., Flannery, M. B., Briggs, D. E. G., and Evershed, R. P. 1998. Biodegradation of the chitin-protein complex in crustacean cuticle. Organic Geochemistry, 28:6776.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Michels, R., Collinson, M. E., Flannery, M. B., and Evershed, R. P. 2000. Alternative origin of aliphatic polymer in kerogen. Geology, 28:559562.Google Scholar
Strauss, H., Vidal, G., Moczydłowska, M., and Paczesna, J. 1997. Carbon isotope geochemistry and palaeontology of Neoproterozoic to early Cambrian siliciclastic successions in the East European Platform, Poland. Geological Magazine, 134:116.Google Scholar
Steiner, M. and Reitner, J. 2001 . Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29:11191122.Google Scholar
Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hösel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Pursche, G., and Bleidorn, C. 2011. Phylogenetic analyses unravel annelid evolution. Nature, 471:9598.Google Scholar
Tang, F., Bengtson, S., Wang, Y., Wang, X-L., and Yin, C. 2011. Eandromeda and the origin of Ctenophora. Evolution and Development, 13:408414.Google Scholar
Toporski, J. K. W., Steele, A., Westall, F., Avci, R., Martill, D. M., and McKay, D. S. 2002. Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel Formation, Germany. Geochimica et Cosmochimica Acta, 66:17731791.Google Scholar
Urbanek, A. and Mierzejewska, G. 1977. The fine structure of zooidal tubes in Sabelliditida and Pogonophora with reference to their affinity. Acta Palaeontologica Polonica, 22:223240.Google Scholar
Urbanek, A. and Mierzejewska, G. 1983. The fine structure of zooidal tubes in Sabelliditida and Pogonophora, p. 100111. In Urbanek, A. and Rozanov, A. Yu. (eds.), Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Publishing House Wydawnictwa Geologiczne, Warszawa.Google Scholar
Valentine, J. W. 2004. On the Origin of Phyla. Chicago, University of Chicago Press, 614 p.Google Scholar
Valentine, J. W. 2007. Seeing ghosts: Neoproterozoic bilaterian body plan, p. 369375. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London, Special Publication 286.Google Scholar
Versteegh, G. J. M. and Blokker, P. 2004. Resistant macromolecules of extant and fossil Microalgae. Phycological Research, 52:325339.Google Scholar
Vinther, J., Sperling, E. A., Briggs, D. E. G., and Peterson, K. J. 2011. A molecular palaeobiological hypthesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proceedings of the Royal Society B, doi.:10.1098/rspb.2011.1773. Google Scholar
Webster, J. and Weber, R. W. S. 2007. Introduction to Fungi. Cambridge University Press, Cambridge, 841 p.Google Scholar
Westall, F., De Vries, S. T., Nijman, W., Rouchon, V., Orberger, B., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J.-N., Marchesini, D., and Severine, A. 2006. The 3.466 Ga “Kitty Gap Chert”, an early Archean microbial Ecosystem. Geological Society of America Special Paper, 405:105131.Google Scholar
Westall, F. and Southam, G. 2006. The early record of life. Archean Geodynamics and Environments Geophysical Monograph Series, 164:283304.Google Scholar
Westall, F., Steele, A., Toporski, J., Walsh, M., Allen, C., Guirdy, S., Mckay, D., Gibson, E., and Chafetz, H. 2000. Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial samples. Journal of Geophysical Research, 105:24, 511–24, 527.Google Scholar
Xiao, S. and Dong, L. 2006. On the morphological and ecological history of Proterozoic Macroalgae, p. 5790. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology 27, Springer.Google Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the NeoproterozoicDoushantuo Formation at Weng'an, Guizhou South China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.Google Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaoehe biota, South China. Journal of Paleontology, 76:345374.Google Scholar
Xiao, S., Zhou, C., Liu, P., Yuan, X., and Wang, D. 2014. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation. Journal of Paleontology Memoir 72, Supplement to Volume 88, Issue 1, 139 p.Google Scholar
Yanishevsky, M. 1926. Ob ostatkah trubchatyh chervei iz kembriyskoy siney gliny. [On the remains of the tubular worms from the Cambrian blue clays]. Ezhegodnik Russkogo Paleontologicheskogo Obchestva 4, p. 99112.Google Scholar
Yin, C. Y., Bengtson, S., and Yue, Z. 2004. Silicified and phosphatised Tianshushania, spheroidal microfossil of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 49:112.Google Scholar
Yin, L.-M., Zhu, M.-Y., Knoll, A. H., Yuan, X.-L., Zhang, J. M., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.Google Scholar
Zhang, X., Liu, W., and Zhao, Y. 2008. Cambrian Burgess Shale-type Lagerstätten in south China: Distribution and significance. Gondwana Research, 14:275279.Google Scholar
Zhang, X.-G. and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.Google Scholar
Zhang, X.-G., Pratt, B. R., and Shen, C. 2011. Embryonic development of a middle Cambrian (500 MYR old) scalidophoran worm. Journal of Paleontology, 85:898903.Google Scholar
Zhao, Y., Huang, Y., Chen, X., Yuan, J., Zhang, Z. and Zhou, Z. 1996. Composition and significance of the middle Cambrian Kaili Lagerstätten in Taijiang county, Guizhou Province, China—a new Burgess Type Lagerstätten. Guizhou Geology, 13:714.Google Scholar
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y., and Droser, M. L. 2008. Eight–armed Ediacaran fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867870.Google Scholar
Zhao, Y., Parsley, R. L., and Peng, J. 2008. Basal middle Cambrian short-stalked eocrinoids from the Kaili Biota: Guizhou Province, China. Journal of Paleontology, 82:415422.Google Scholar