Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T17:52:47.577Z Has data issue: false hasContentIssue false

Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central East Greenland

Published online by Cambridge University Press:  14 July 2015

J. W. Green
Affiliation:
University of South Carolina at Spartanburg, Spartanburg 29303
A. H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
K. Swett
Affiliation:
Department of Geology, University of Iowa, Iowa City 52242

Abstract

Silicified oolites and pisolites from Bed 18 of the Upper Proterozoic (about 700–800 Ma) Limestone–Dolomite “Series” of the Eleonore Bay Group, central East Greenland, contain a diverse suite of organically preserved microfossils that is, for the most part, unlike assemblages previously described from Proterozoic cherts and shales. Three principal assemblages occur in these rocks: 1) a clast-bound assemblage found in detrital carbonate grains (now silicified) that served as nuclei for ooid and pisoid growth, as well as in uncoated mud and mat clasts that were carried into the zone of ooid and pisoid deposition; 2) an epilithic and interstitial assemblage consisting of microorganisms that occurred on top of and between grains; and 3) a euendolithic assemblage composed of microbes that actively bored into coated grains. The Upper Proterozoic euendolithic assemblage closely resembles a community of euendolithic cyanobacteria found today in shallow marine ooid sands of the Bahama Banks. Thirteen species are described, of which eight are new, five representing new genera: Eohyella dichotoma n. sp., Eohyella endoatracta n. sp., Eohyella rectoclada n. sp., Thylacocausticus globorum n. gen. and sp., Cunicularius halleri n. gen. and sp., Graviglomus incrustus n. gen. and sp., Perulagranum obovatum n. gen. and sp., and Parenchymodiscus endolithicus n. gen. and sp.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akpan, E. B., and Farrow, G. E. 1984. Shell-boring algae on the Scottish continental shelf: identification, distribution, bathymetric zonation. Transactions of the Royal Society, Earth Sciences, 75:112.Google Scholar
Bathurst, R. G. C. 1975. Carbonate Sediments and Their Diagenesis. Elsevier, New York, 658 p.Google Scholar
Bertrand-Sarfati, J., and Caby, R. 1976. Précisions sur l'âge précambrien terminal (vendien) de la série carbonatée à stromatolites du groupe d'Eleonore Bay (Groenland oriental). Académie des Sciences, Comptes Rendus, Ser. D, 278:22672270.Google Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology, 59:741765.Google Scholar
Bornet, E., and Flahaut, C. 1888. Notes sur deux nouveaux genres d'Algues perforantes. Journal Botanique, 2:161165.Google Scholar
Borzi, A. 1914. Studi sulle mixofixee—I. Nuovo Giornale Botanico Italiano, n.s., 21:307360.Google Scholar
Bourrelly, P. 1985. Les algues d'eau douce. Vol. 3. Les algues bleues et rouges, les Eugléniens, Peridiniens et Cryptomonadines. Editions N. Boubée, p. 283606.Google Scholar
Caby, R. 1976. Investigations on the lower Eleonore Bay Group in the Alpefjord region central East Greenland. Grønlands Geologiske Undersøgelse, Rapport No. 80:102106.CrossRefGoogle Scholar
Caby, R., Peucat, J. J., Tisserant, D., and Clauer, N. 1981. Arguments against a Middle Proterozoic orogenesis within the central metamorphic complex of the East Greenland Caledonides. Terra Cognita, 1:38.Google Scholar
Campbell, S. E. 1980. Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta). Phycologia, 19:2536.CrossRefGoogle Scholar
Campbell, S. E. 1982. Precambrian endoliths discovered. Nature, 299:429431.CrossRefGoogle Scholar
Campbell, S. E., Kazmierczak, J., and Golubic, S. 1979. Palaeoconchocelis starmachii gen. n., sp. n., an endolithic rhodophyte (Bangiaceae) from the Silurian of Poland. Acta Palaeontologica Polonica, 24:405408.Google Scholar
Campbell, S. E., Bertrand-Sarfati, J., and Simon, L. 1982. Earliest endolithic borings in late Precambrian silicified ooids and lowermost Cambrian carbonate ooids. Geological Society of America, Abstracts with Programs, 14:458.Google Scholar
Carpenter, W. 1845. On the microscopic structure of shells. British Association for the Advancement of Science, Report, 14:124.Google Scholar
Copeland, J. J. 1936. Yellowstone thermal Myxophyceae. Annals of the New York Academy of Science, 36, 232 p.CrossRefGoogle Scholar
Derry, L., Keto, L., Jacobsen, S., Knoll, A. H., and Swett, K.In press. Sr isotopic variations of Late Proterozoic carbonates from East Greenland and Svalbard. Geochimica et Cosmochimica Acta.Google Scholar
Desikachary, T. V. 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 p.Google Scholar
Diver, W. L., and Peat, C. J. 1979. On the interpretation and classification of Precambrian organic-walled microfossils. Geology, 7:401404.2.0.CO;2>CrossRefGoogle Scholar
Drouet, F., and Daily, W. 1956. Revision of the coccoid Myxophyceae. Butler University Botanical Studies, 12, 218 p.Google Scholar
Eha, S. 1953. The pre-Devonian sediments of Ymers Ø, Suess Land, and Ella Ø (East Greenland) and their tectonics. Meddelelser om Grønland, 111:1105.Google Scholar
Ercegovic, A. 1932. Etudes écologiques et sociologiques des Cyanophycées lithophytes de la côte yougoslave de l'Adriatique. Académie Yougoslave des Sciences et Arts Classe Sciences Mathématiques Naturelles, Bulletin Internationale, 26:3356.Google Scholar
Francis, S., Margulis, L., and Barghoorn, E. S. 1978. On the experimental silicification of microorganisms II. On the time of appearance of eukaryotic organisms in the fossil record. Precambrian Research, 6:65100.CrossRefGoogle Scholar
Fränkl, E. 1953. Geologische Untersuchungen in Ost-Andrées Land (Nordostgrønland). Meddelelser om Grønland, 113:1160.Google Scholar
Frémy, P. 1945. Contribution à la physiologie des Thallophytes marines perforant et cariant les roches calcaires et les coquilles. Annales de l'Institute Océanographique, 22:107144.Google Scholar
Fritsch, F. E. 1945. The Structure and Reproduction of the Algae. 2 vols. Cambridge University Press, Cambridge, 1, 791 p., 2, 939 p.Google Scholar
Geitler, L. 1925. Synoptische Darstellung der Cyanophyceen in morphologische und systematischer Hinsicht. Beihefte Botanisches Centralblatt II, 41:163294.Google Scholar
Geitler, L. 1932. Cyanophyceae, p. 11196. In Rabenhorst, L. (ed.), Kryptogamen-Flora von Deutschland, Österreich, und der Schweiz. Leipzig, Akademie Verlagsgesell., 14.Google Scholar
Gerasimenko, L. M., and Krylov, I. N. 1983. Postmortem alterations of cyanobacteria in the algal-bacterial films in the hot springs of Kamchatka. Doklady, Earth Science Section, 272:215218.Google Scholar
Golubic, S. 1976. Taxonomy of extant stromatolite-building cyanophytes, p. 127140. In Walter, M. R. (ed.), Stromatolites. Elsevier, New York.CrossRefGoogle Scholar
Golubic, S., and Barghoorn, E. S. 1977. Interpretation of microbial fossils with special reference to the Precambrian, p. 114. In Flugel, E. (ed.), Fossil Algae. Springer-Verlag, New York.Google Scholar
Golubic, S., Friedmann, I., and Schneider, J. 1981. The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51:475478.Google Scholar
Golubic, S., Perkins, R. D., and Lukas, K. J. 1975. Boring microorganisms and microborings in carbonate substrates, p. 229259. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Golubic, S., Campbell, S. E., and Zehnder, A. 1985. The 9th Symposium of the International Association for Cyanophyte Research (IAC) Report. Archive fur Hydrobiologie, Supplementband, 71:314.Google Scholar
Gomont, M. 1892. Monographic des Oscillariées (Nostocac$eeAs homocystées). Annales des Sciences naturelles, Botanique, 7:263369.Google Scholar
Green, J. W. 1988. Microfossils from the Upper Proterozoic Limestone–Dolomite “Series,” central East Greenland. Unpubl. Ph.D. dissertation, Harvard University, Cambridge, 240 p.Google ScholarPubMed
Green, J. W., Knoll, A. H., and Swett, K. 1985. Silicified microfossils from the Upper Proterozoic Limestone–Dolomite Series, central East Greenland. American Journal of Botany, Abstracts, 72:894.Google Scholar
Green, J. W., Knoll, A. H., and Swett, K. 1987. Microfossil assemblages in coated grains from the Upper Proterozoic of Svalbard and East Greenland. Geological Society of America, Abstracts with Programs, 19:683.Google Scholar
Green, J. W., Knoll, A. H., and Swett, K.In press. Microfossils from the silicified stromatolitic carbonates of the Upper Proterozoic Limestone–Dolomite “Series,” central East Greenland. Geological Magazine.Google Scholar
Haller, J. 1971. Geology of the East Greenland Caledonides. Wiley-Interscience, New York, 413 p.Google Scholar
Hambrey, M. J., and Moncrieff, A. C. M. 1985. Vendian stratigraphy and sedimentology of the East Greenland Caledonides. Grønlands Geologiske Undersøgelse, Rapport, 125:8894.CrossRefGoogle Scholar
Hambrey, M. J., and Spencer, A. M. 1987. Late Precambrian glaciation of central East Greenland. Meddelelser om Grønland, Geoscience, 19:150.CrossRefGoogle Scholar
Hardie, L. A. 1977a. Algal structures in cemented crusts and their environmental significance, p. 159177. In Hardie, L. A. (ed.), Sedimentation on the Modern Carbonate Tidal Flats of Northwest Andros Island, Bahamas. Johns Hopkins University Press, Baltimore.Google Scholar
Hardie, L. A. 1977b. Distinctive features of a rainy, low-energy, tropical carbonate tidal flat: a summary, p. 178183. In Hardie, L. A. (ed.), Sedimentation on the Modern Carbonate Tidal Flats of Northwest Andros Island, Bahamas. Johns Hopkins University Press, Baltimore.Google Scholar
Hardie, L. A., and Ginsburg, R. N. 1977. Layering: the origin and environmental significance of lamination and thin bedding, p. 50123. In Hardie, L. A. (ed.), Sedimentation on the Modern Carbonate Tidal Flats of Northwest Andros Island, Bahamas. Johns Hopkins University Press, Baltimore.Google Scholar
Harris, P. M. 1983. The Joulters ooid shoal, Great Bahama Banks, p. 132141. In Peryt, T. M. (ed.), Coated Grains. Springer-Verlag, New York.CrossRefGoogle Scholar
Higgins, A. K., Friderichsen, J. D., Rex, D. C., and Gledhill, A. R. 1978. Early Proterozoic isotopic ages in the East Greenland Caledonian fold belt. Contributions to Mineralogy and Petrology, 67:8794.CrossRefGoogle Scholar
Hofmann, H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. Journal of Paleontology, 50:10401073.Google Scholar
Horodyski, R. J. 1987. A new occurrence of the vase-shaped fossil Melanocyrillium and new data on this relatively complex late Precambrian fossil. Geological Society of America, Abstracts with Programs, 19:707.Google Scholar
Horodyski, R. J., and Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125159.CrossRefGoogle Scholar
Katz, H. R. 1952. Zur Geologie von Strindbergs Land (Nordostgrønland). Meddelelser om Grønland, 111:1150.Google Scholar
Katz, H. R. 1961. Late Precambrian to Cambrian stratigraphy in East Greenland, p. 299328. In Raasch, G. E. (ed.), Geology of the Arctic, I. University of Toronto Press, Toronto.Google Scholar
Kazmierczak, J., and Golubic, S. 1976. Oldest organic remains of boring algae from Polish Upper Silurian. Nature, 261:400406.CrossRefGoogle Scholar
Kirchner, O. 1898. Schizophyceae, p. 4592. In Engler, A. and Prantl, K. (eds.), Die natürlichen Pflanzenfamilien, I, 1A.Google Scholar
Knoll, A. H. 1982. Microorganisms from the late Precambrian Draken Conglomerate, Ny Friesland, Spitsbergen. Journal of Paleontology, 56:755790.Google Scholar
Knoll, A. H. 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1985. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society of London, B311:111122.Google Scholar
Knoll, A. H. 1986. Geological evidence for early evolution. Treballs de la Societat Catalana de Biologia, 39:113141.Google Scholar
Knoll, A. H., and Calder, S. 1983. Microbiotas of the late Precambrian Rysso Formation, Nordaustlandet, Svalbard. Palaeontology, 26:467496.Google Scholar
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.CrossRefGoogle Scholar
Knoll, A. H., Barghoorn, E., and Golubic, S. 1975. Paleopleurocapsa wopfnerii gen. et sp. nov.: a late Precambrian alga and its modern counterpart. Proceedings of the National Academy of Sciences, 72:24882492.CrossRefGoogle Scholar
Knoll, A. H., Golubic, S., Green, J., and Swett, K. 1986a. Organically preserved microbial endoliths from the Late Proterozoic of East Greenland. Nature, 321:856857.CrossRefGoogle ScholarPubMed
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., and Lambert, I. B. 1986b. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321:832838.CrossRefGoogle ScholarPubMed
Knoll, A. H., Swett, K., and Burkhardt, E.In press. Paleobiology of the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. Journal of Paleontology.Google Scholar
Koch, L. 1929. The geology of East Greenland. Meddelelser om Grønland, 73:1204.Google Scholar
Komarek, J., and Anagnostidis, K. 1986. Modern approach to the classification system of cyanophytes: 2—Chroococcales. Archiv für Hydrobiologie, Supplementband, 73:157226.Google Scholar
Lagerheim, G. 1885. Codiolum polyrhizum n. sp., Ett Bidrag. Till Kannedomen om Slagtet Codiolum A. Br. Oversigt af Kongele Vetenskaps Akademiens Förhandlinger, 42:2131.Google Scholar
Lambert, I. B., Walter, M. R., Wenlong, Zhang, Songnian, Lu, and Guogan, Ma. 1987. Paleoenvironment and carbon isotyope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 325:140142.CrossRefGoogle Scholar
Le Campion-Alsumard, T. 1978. Les cyanophycées endolithes marines: systématique, ultrastructure, écologie et biodestruction. Unpubl. These Doctoral, l'Université Aix-en-Marseille, 198 p.Google Scholar
Le Campion-Alsumard, T. 1979. Les cyanophycées endolithes marines, systématique, ultrastructure, écologie et biodestruction. Oceanologica Acta, 2:143156.Google Scholar
Le Campion-Alsumard, T., and Golubic, S. 1985. Hyella caespitosa Bornet et Flahault and Hyella balani Lehman (Pleurocapsales, Cyanophyta): a comparative study. Archiv für Hydrobiologie, Supplementband, 71:119148.Google Scholar
Licari, G. R. 1978. Biogeology of the late pre-Phanerozoic Beck Spring Dolomite of eastern California. Journal of Paleontology, 52:767792.Google Scholar
Lukas, K. J., and Golubic, S. 1983. New endolithic cyanophytes from the North Atlantic Ocean. II. Hyella gigas Lukas & Golubic sp. nov. from the Florida continental margin. Journal of Phycology, 19:129136.CrossRefGoogle Scholar
Lukas, K. J., and Hoffman, E. J. 1984. New endolithic cyanophytes from the North Atlantic Ocean. III. Hyella pyxis Lukas & Hoffman sp. nov. Journal of Phycology, 20:515520.CrossRefGoogle Scholar
Mägdefrau, K. 1937. Lebensspuren fossiler “Bohr”-Organismen. Beiträge zur Naturkundlichen Forschung in Südwestdeutschland, 2:5467.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1982. Proterozoic microfossils from the Sukhaya Tunguska, Shorikha, and Yudoma Formations of the Siberian Platform, USSR. Journal of Paleontology, 56:4283.Google Scholar
Neumann, A. C., Gebelein, C. D., and Scoffin, T. P. 1970. The composition, structure and erodability of subtidal mats, Abaco, Bahamas. Journal of Sedimentary Petrology 40:274297.Google Scholar
Peryt, T. M. 1983. Classification of coated grains, p. 36. In Peryt, T. M. (ed.), Coated Grains. Springer-Verlag, New York.CrossRefGoogle Scholar
Rex, D. C., and Gledhill, A. R. 1981. Isotopic studies in the East Greenland Caledonides (72$dG–74$dGN)—Precambrian and Caledonian ages. Grønland Geologiske Undersøgelse Rapport, 104:4772.CrossRefGoogle Scholar
Richter, D. K. 1983. Calcareous ooids: a synopsis, p. 7199. In Peryt, T. M. (ed.), Coated Grains. Springer-Verlag, New York.CrossRefGoogle Scholar
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111:161.Google Scholar
Rosen, J., and Golubic, S. 1988. New endolithic cyanophytes from the North Atlantic Ocean. IV. Hyella racemus. Journal of Phycology, in press.Google Scholar
Schaub, H. P. 1950. On the Pre-Cambrian to Cambrian sedimentation in NE-Greenland. Meddelelser om Grønland, 114:150.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs, late Precambrian, central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W. 1975. Precambrian paleobiology: problems and perspectives. Annual Review of Earth and Planetary Sciences, 3:213249.CrossRefGoogle Scholar
Sommer, M. 1957. Geologie von Lyells Land (Ne-Grønland). Meddelelser om Grønland, 155, 2, 157 p.Google Scholar
Stanier, R., Sistrom, W. R., Hansen, T. A., Whitton, B. A., Castenholz, R. W., Pfennig, N., Gorlenko, V. N., Kondratieva, E. N., Eimhjellen, K. E., Whittenbury, R., Gherna, R. L., and Truper, H. G. 1978. Proposal to place nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. International Journal of Systematic Bacteriology, 28:335336.Google Scholar
Swett, K. 1981. Cambro-Ordovician strata in Ny Friesland, Spitsbergen, and their paleotectonic significance. Geological Magazine, 118:225250.CrossRefGoogle Scholar
Swett, K., and Knoll, A. H. 1988. Marine pisolites from Upper Proterozoic successions of Greenland and Spitsbergen. Sedimentology, in press.CrossRefGoogle Scholar
Teichert, C. 1933. Untersuchungen zum Bau des kaledonischen Gebirges in Ostgronland. Meddelelser om Grønland, 95:112.Google Scholar
Veizer, J., Compston, W., Clauer, N., and Schidlowski, M. 1983. 87Sr/86Sr in Late Proterozoic carbonates: evidence for a “mantle” event at ~900 Ma ago. Geochimica et Cosmochimica Acta, 47:295302.CrossRefGoogle Scholar
Vidal, G. 1979. Acritarchs from the Upper Proterozoic and Lower Cambrian of East Greenland. Grønland Geologiske Undersøgelse, Bulletin, 134:155.CrossRefGoogle Scholar
Waterbury, J. B. 1976. Purification and properties of some fresh water and marine cyanobacteria belonging to the orders Chamaesiphonales and Pleurocapsales. Unpubl. Ph.D. dissertation, University of California, Berkeley, 279 p.Google Scholar
Waterbury, J. B., and Stanier, R. Y. 1978. Patterns of growth and development in pleurocapsalean Cyanobacteria. Microbiology Reviews, 42:244.CrossRefGoogle ScholarPubMed
Wettstein, R. 1924. Handbuch der Systematischen Botanik, Bd. 1. Franz Deuticke, Leipzig, 1017 p.Google Scholar
Zhang, Y., and Golubic, S. 1987. Endolithic microfossils (Cyanophyta) from Early Proterozoic stromatolites, Hebei province, China. Acta Micropalaeontologica Sinica, 4:315.Google Scholar