Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-18T19:39:17.226Z Has data issue: false hasContentIssue false

Marine Early Triassic Actinopterygii from the Candelaria Hills (Esmeralda County, Nevada, USA)

Published online by Cambridge University Press:  29 April 2019

Carlo Romano
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland, 〈[email protected]〉; 〈[email protected]
Adriana López-Arbarello
Affiliation:
Department für Geo- und Umweltwissenschaften (Paläontologie & Geobiologie), GeoBio-Center, Ludwig Maximilians Universität, Richard-Wagner-Straße 10, 80333 München, Germany, 〈[email protected]
David Ware
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland, 〈[email protected]〉; 〈[email protected] Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany, 〈[email protected]
James F. Jenks
Affiliation:
1134 Johnson Ridge Lane, West Jordan, Utah 84084, USA, 〈[email protected]
Winand Brinkmann
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland, 〈[email protected]〉; 〈[email protected]

Abstract

A new locality for low-latitudinal, Early Triassic fishes was discovered in the Candelaria Hills, southwestern Nevada (USA). The fossils are derived from the lower Candelaria Formation, which was deposited during the middle–late Dienerian (late Induan), ca. 500 ka after the Permian-Triassic boundary mass extinction event. The articulated and disarticulated Osteichthyes (bony fishes), encompassing both Actinistia (coelacanths) and Actinopterygii (ray-fins), are preserved in large, silicified concretions that also contain rare coprolites. We describe the first actinopterygians from the Candelaria Hills. The specimens are referred to Pteronisculus nevadanus new species (Turseoidae?), Ardoreosomus occidentalis new genus new species (Ptycholepidae), the stem neopterygian Candelarialepis argentus new genus new species (Parasemionotidae), and Actinopterygii indet. representing additional taxa. Ardoreosomus n. gen. resembles other ptycholepids, but differs in its more angulate hyomandibula and lack of an elongate opercular process. Candelarialepis n. gen. is one of the largest parasemionotids, distinguished by its bipartite preopercle and scale ornamentation. Presented new species belong to genera (Pteronisculus) or families (Ptycholepidae, Parasemionotidae) that radiated globally after the mass extinction, thus underlining the striking similarities between Early Triassic (pre-Spathian) osteichthyan assemblages. The current data suggest that the diversity of low-latitudinal, Early Triassic bony fishes may have been greater than indicated thus far by the fossil record, probably due to sampling or taphonomic failure. All 24 fossils from the Candelaria Hills represent mid-sized or large osteichthyans, confirming the obvious absence of very small species (≤ 10 cm adult body length) in the beginning of the Mesozoic Era—even in low latitudes.

UUID: http://zoobank.org/6a66ac96-d6b7-4617-94db-5a93cdb14215

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L., 1832, Untersuchungen über die fossilen Fische der Lias-Formation: Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, v. 3, p. 139149.Google Scholar
Agassiz, L., 1834, Abgerissene Bemerkungen über fossile Fische: Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, v. 1834, p. 379390.Google Scholar
Aldinger, H., 1937, Permische Ganoidfische aus Ostgrönland: Meddelelser om Grønland, v. 102, p. 1392.Google Scholar
Anderson, K., and Woods, A.D., 2013, Taphonomy of Early Triassic fish fossils of the Vega-Phroso Siltstone Member of the Sulphur Mountain Formation near Wapiti Lake, British Columbia, Canada: Journal of Palaeogeography, v. 2, p. 321343.Google Scholar
Arratia, G., 2009, Identifying patterns of diversity of the actinopterygian fulcra: Acta Zoologica, v. 90 (Supplement 1), p. 220235.Google Scholar
Arratia, G., and Herzog, A., 2007, A new halecomorph fish from the Middle Triassic of Switzerland and its systematic implications: Journal of Vertebrate Paleontology, v. 27, p. 838849.Google Scholar
Arratia, G., and Schultze, H.-P., 1991, Palatoquadrate and its ossifications: development and homology within osteichthyans: Journal of Morphology, v. 208, p. 181.Google Scholar
Baresel, B., Bucher, H., Bagherpour, B., Brosse, M., Guodun, K., and Schaltegger, U., 2017, Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms: Scientific Reports, v. 7, 43630.Google Scholar
Bassani, F., 1886, Sui fossili e sull'età degli schisti bituminosi Triasici di Besano in Lombardia. Communicazione preliminare: Atti della Società Italiana di Scienze Naturale, v. 29, p. 1572.Google Scholar
Beltan, L., 1968, La faune ichthyologique de l'Eotrias du N.W. de Madagascar: le neurocrâne: Paris, Cahiers de Paléontologie CNRS, 135 p.Google Scholar
Beltan, L., 1980a, Sur la présence d'un poisson volant, Icarealcyon malagasius, n.g. n.sp. dans l'Eotrias malgache: Congrès Géologique International, v. 26, p. 155.Google Scholar
Beltan, L., 1980b, Eotrias du nord-ouest de Madagascar: etude de quelques poissons, dont un est en parturition: Annales de la Société Géologique du Nord, v. 99, p. 453464.Google Scholar
Beltan, L., 1984a, Quelques poisons du Muschelkalk supérieur d'Espagne: Acta Geologica Hispánica, v. 19, p. 117127.Google Scholar
Beltan, L., 1984b, A propos d'un poisson volant biplane de l'Eotrias du NW de Madagascar: Annales de la Société Géologique du Nord, v. 103, p. 7582.Google Scholar
Bender, P., 2004, Late Permian actinopterygian (palaeoniscid) fishes from the Beaufort Group, South Africa: biostratigraphic and biogeographic implications: Council for Geoscience Bulletin, v. 135, p. 184.Google Scholar
Bittner, A., 1901, Über Pseudomonotis Telleri und verwandte Arten der unteren Trias: Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, v. 50, p. 559592.Google Scholar
Blainville, H. de, 1818, Sur les ichthyolites ou les poissons fossils: Nouveau Dictionnaire d'Histoire Naturelle, appliquée aux Arts, à l'Agriculture, à l’Économie rurale et domestique, à la Medicine, etc. Nouvelle Edition, v. 27, p. 310395.Google Scholar
Bock, W., 1959, New eastern American Triassic fishes and Triassic correlations: Geological Center Research Studies, v. 1, p. 1184.Google Scholar
Boni, A., 1937, Vertebrati retici italiani: Memorie della Reale Accademia Nazionale dei Lincei, Serie 6, v. 6, p. 521719.Google Scholar
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T., 2006, The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 239, p. 374395.Google Scholar
Brayard, A., Krumenacker, L.J., Botting, J.P., Jenks, J.F., Bylund, K.G., Fara, E., Vennin, E., Olivier, N., Goudemand, N., Saucède, T., Charbonnier, S., Romano, C., Doguzhaeva, L., Thuy, B., Hautmann, M., Stephen, D.A., Thomazo, C., and Escarguel, G., 2017, Unexpected Early Triassic marine ecosystem and the rise of the modern evolutionary fauna: Science Advances, v. 3, e1602159.Google Scholar
Brinkmann, W., Romano, C., Bucher, H., Ware, D., and Jenks, J., 2010, Palaeobiogeography and stratigraphy of advanced gnathostomian fishes (Chondrichthyes and Osteichthyes) in the Early Triassic and from selected Anisian localities (Report 1863–2009): Zentralblatt für Geologie und Paläontologie, Teil II, v. 2009, p. 765812.Google Scholar
Brough, J., 1933, On a new palaeoniscid genus from Madagascar: Annals and Magazine of Natural History, Series 10, v. 11, p. 7687.Google Scholar
Brough, J., 1936, On the evolution of bony fishes during the Triassic period: Biological Reviews, v. 11, p. 385405.Google Scholar
Brough, J., 1939, The Triassic fishes of Besano, Lombardy: London, British Museum (Natural History), 117 p.Google Scholar
Bürgin, T., 1992, Basal ray-finned fishes (Osteichthyes; Actinopterygii) from the Middle Triassic of Monte San Giorgio (Canton Tessin, Switzerland). Systematic palaeontology with notes on functional morphology and palaeoecology: Schweizerische Paläontologische Abhandlungen, v. 114, p. 1164.Google Scholar
Bürgin, T., 1999, Middle Triassic marine fish faunas from Switzerland, in Arratia, G., and Schultze, H.-P., eds., Mesozoic Fishes 2. Systematics and Fossil Record: München, Dr. Friedrich Pfeil, p. 481494.Google Scholar
Ceballos, G., and Ehrlich, P.R., 2018, The misunderstood sixth mass extinction: Science, v. 360, p. 10801081.Google Scholar
Clarke, J.T. and Friedman, M., 2018, Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety: Paleobiology, v. 44, p. 402433.Google Scholar
Cope, E.D., 1887, Geology and palaeontology. Zittel's Manual of Palaeontology: American Naturalist, v. 22, p. 10141019.Google Scholar
Collinson, J.W., and Hasenmueller, W.A., 1978, Early Triassic paleogeography and biostratigraphy of the Cordilleran miogeosyncline, in Howell, D.G., and McDougall, K.A., eds., Mesozoic Paleogeography of the Western United States. Pacific Coast Paleogeography Symposium 2: Los Angeles, The Pacific Section, Society of Economic Paleontologists and Mineralogists, p. 175187.Google Scholar
Davies, G.R., Moslow, T.F., and Sherwin, M.D., 1997, Ganoid fish Albertonia sp. from the Lower Triassic Montney Formation, western Canada sedimentary basin: Bulletin of Canadian Petroleum Geology, v. 45, p. 715718.Google Scholar
Deecke, W., 1889, Ueber Fische aus verschiedenen Horizonten der Trias: Palaeontographica, v. 35, p. 97138.Google Scholar
Deecke, W., 1927, Über die Triasfische: Paläontologische Zeitschrift, v. 8, p. 184198.Google Scholar
Fisher, J.A.D., Frank, K.T., and Leggett, W.C., 2010, Global variation in marine fish body size and its role in biodiversity-ecosystem functioning: Marine Ecology Progress Series, v. 405, p. 113.Google Scholar
Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P.A., Cordey, F., and Guodun, K., 2007, Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones: Earth and Planetary Science Letters, v. 258, p. 593604.Google Scholar
Gardiner, B.G., 1966, Catalogue of Canadian fossil fishes: Contribution/Royal Ontario Museum, Toronto, Life Sciences Division, v. 68, p. 1154.Google Scholar
Gardiner, B.G., 1967, Further notes on palaeoniscoid fishes with a classification of the Chondrostei: Bulletin of the British Museum (Natural History), v. 14, p. 143206.Google Scholar
Gardiner, B.G., 1984, The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia: Bulletin of the British Museum (Natural History), Geology Series, v. 37, p. 173428.Google Scholar
Gardiner, B.G., and Jubb, R.A., 1975, A new palaeoniscid from the Lower Beaufort Series of South Africa: Annals of the South African Museum, v. 67, p. 441445.Google Scholar
Gibson, S.Z., 2013, A new hump-backed ginglymodian fish (Neopterygii, Semionotiformes) from the Upper Triassic Chinle Formation of southeastern Utah: Journal of Vertebrate Paleontology, v. 33, p. 10371050.Google Scholar
Giles, S., Xu, G.-H., Near, T.J., and Friedman, M., 2017, Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes: Nature, v. 549, p. 265268.Google Scholar
Goddard, M., 1907, Fish remains from the marine Lower Triassic of Aspen Ridge, Idaho: University of California Publications, Bulletin of the Department of Geology, v. 5, p. 145148.Google Scholar
Grande, L., 2010, An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy: the resurrection of Holostei: American Society of Ichthyology and Herpetology, Special Publication, v. 6, p. 1871.Google Scholar
Grande, L., and Bemis, W.E., 1998, A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history: Society of Vertebrate Paleontology Memoir, v. 4, p. 1690.Google Scholar
Griffith, J., 1977, Upper Triassic fishes from Polzberg bei Lunz, Austria: Zoological Journal of the Linnean Society, v. 60, p. 193.Google Scholar
Guinot, G., and Cavin, L., 2018, Body size evolution and habitat colonization across 100 million years (Late Jurassic–Paleocene) of the actinopterygian evolutionary history: Fish and Fisheries, v. 19, p. 577597.Google Scholar
Hautmann, M., 2014, Diversification and diversity partitioning: Paleobiology, v. 40, p. 162176.Google Scholar
Hilton, E.J., Grande, L., and Bemis, W.E., 2011, Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur, 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae): Fieldiana: Life and Earth Sciences, v. 3, p. 1168.Google Scholar
Hofmann, R., Hautmann, M., Brayard, A., Nützel, A., Bylund, K.G., Jenks, J.F., Vennin, E., Olivier, N., and Bucher, H., 2014, Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa: Palaeontology, v. 57, p. 547589.Google Scholar
Huxley, T.H., 1880, On the application of the laws of evolution to the arrangement of the vertebrata, and more particularly of the Mammalia: Proceedings of the Scientific Meetings of the Zoological Society of London, v. 1880, p. 649662.Google Scholar
Knopf, A., 1922, The Candelaria silver district, Nevada: U.S. Geological Survey Bulletin, v. 735a, p. 122.Google Scholar
Kogan, I., and Romano, C., 2016a, Redescription of Saurichthys madagascariensis Piveteau, 1945 (Actinopterygii, Early Triassic), with implications for the early saurichthyid morphotype: Journal of Vertebrate Paleontology, v. 36, e1151886.Google Scholar
Kogan, I., and Romano, C., 2016b, A new postcranium of Saurichthys from the Early Triassic of Spitsbergen. Paläontologie, Stratigraphie, Fazies, 23: Freiberger Forschungshefte C, v. 550, p. 205221.Google Scholar
Koot, M.B., 2013, Effects of the Late Permian mass extinction on chondrichthyan palaeobiodiversity and distribution patterns [Ph.D. thesis]: Plymouth, Plymouth University, 853 p. http://pearl.plymouth.ac.uk/handle/10026.1/1584Google Scholar
Lambe, L.M., 1916, Ganoid fishes from near Banff, Alberta: Proceedings and Transactions of the Royal Society of Canada, Series III, v. 10, p. 3544.Google Scholar
Lehman, J.-P., 1952, Etude complémentaire des poissons de l'Eotrias de Madagascar: Kungliga Svenska Vetenskapsakademiens Handlingar, Fjärde Serien, v. 2(6), p. 1201.Google Scholar
Lehman, J.-P., Château, C., Laurain, M., and Nauche, M., 1959, Paléontologie de Madagascar 27. Les poissons de la Sakamena moyenne: Annales de Paléontologie, v. 45, p. 175219.Google Scholar
Leidy, J., 1857, Notices of some remains of extinct fishes: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 9, p. 167168.Google Scholar
Li, Q., 2009, A new parasemionotid-like fish from the Lower Triassic of Jurong, Jiangsu Province, South China: Palaeontology, v. 52, p. 369384.Google Scholar
Linnaeus, C., 1758, Systema Naturae, Editio X [Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus 1. Editio decima, reformata]. Laurentii Salvii: Holmiæ (1956 facsimile reprint; London, Trustees of the British Museum [Natural History]).Google Scholar
Linnaeus, C., 1766, Systema Naturae. Editio Duodecima, Reformata. Impensis Direct Laurentii Salvi: Holmiae, v. 1, p. 1532.Google Scholar
Liu, G.-B., Feng, H.-Z., Wang, J.-X., Wu, T.-M., and Zhai, Z.-H., 2002, Early Triassic fishes from Jurong, Jiangsu: Acta Palaeontologica Sinica, v. 41, p. 2752 [in Chinese, with English summary].Google Scholar
Liu, H., and Ma, T., 1973, A new palaeoniscoid fish from the Chichitsao series (Permian) of Sinkiang: Memoirs of the Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, v. 10, p. 614 [in Chinese].Google Scholar
López-Arbarello, A., 2004, The record of Mesozoic fishes from Gondwana (excluding India and Madagascar), in Arratia, G., and Tintori, A., eds., Mesozoic fishes 3. Systematics, Paleoenvironments and Biodiversity: München, Dr. Friedrich Pfeil, p. 597624.Google Scholar
López-Arbarello, A., Bürgin, T., Furrer, H., and Stockar, R., 2016, New holostean fishes (Actinopterygii: Neopterygii) from the Middle Triassic of the Monte San Giorgio (Canton Ticino, Switzerland): PeerJ, v. 4, e2234.Google Scholar
Marramà, G., Lombardo, C., Tintori, A., and Carnevale, G., 2017, Redescription of ‘Perleidus’ (Osteichthyes, Actinopterygii) from the Early Triassic of northwestern Madagascar: Rivista Italiana di Paleontologia e Stratigrafia, v. 123, p. 219242.Google Scholar
Mickle, K.E., 2013, Revisiting the actinopterygian preopercle, in Arratia, G., Schultze, H.-P., and Wilson, M.V.H., eds., Mesozoic Fishes 5. Global Diversity and Evolution: München, Dr. Friedrich Pfeil, p. 3571.Google Scholar
Mickle, K.E., 2015, Identification of the bones of the snout in fossil lower actinopterygians—a new nomenclature scheme based on characters: Copeia, v. 103, p. 838857.Google Scholar
Müller, J., 1845, Ueber den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische: Archiv für Naturgeschichte, v. 11, p. 91141.Google Scholar
Müller, A.H., 1962, Körperlich erhaltene Fische (Palaeoniscoidea) aus dem Zechstein (Kupferschiefer) von Ilmenau (Thüringen): Geologie, v. 11, p. 845856.Google Scholar
Muller, S.W., and Ferguson, H.G., 1939, Mesozoic stratigraphy of the Hawthorne and Tonopah quadrangles, Nevada: Bulletin of the Geological Society of America, v. 50, p. 15731624.Google Scholar
Mutter, R., 2011, A case study of the palaeobiogeography of Early Mesozoic actinopterygians, the family Ptycholepidae, in Upchurch, P., McGowan, A.J., and Slater, C.S.C., eds., Palaeogeography and Palaeobiogeography: Biodiversity in Space and Time: Boca Raton, CRC Press, p. 143171.Google Scholar
Mutter, R., and Neuman, A.G., 2009, Recovery from the end-Permian extinction event: evidence from “Lilliput Listracanthus: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 284, p. 2228.Google Scholar
Mutter, R., Cartanyà, J., and Basaraba, S.A.U., 2008, New evidence of Saurichthys from the Lower Triassic with an evaluation of early saurichthyid diversity, in Arratia, G., Schultze, H.-P., and Wilson, M.V.H., eds., Mesozoic Fishes 4. Homology and Phylogeny: München, Dr. Friedrich Pfeil, p. 103127.Google Scholar
Neuman, A.G., 2015, Fishes from the Lower Triassic portion of the Sulphur Mountain Formation in Alberta, Canada: geological context and taxonomic composition: Canadian Journal of Earth Sciences, v. 52, p. 557568.Google Scholar
Neuman, A.G., and Mutter, R.J., 2005, Helmolepis cyphognathus, sp. nov., a new platysiagid actinopterygian from the Lower Triassic Sulphur Mountain Formation (British Columbia, Canada): Canadian Journal of Earth Sciences, v. 42, p. 2536.Google Scholar
Newberry, J.S., 1878, Descriptions of new fossil fishes from the Trias: Annals of the New York Academy of Sciences, v. 1, p. 127128.Google Scholar
Nielsen, E., 1936, Some few preliminary remarks on Triassic fishes from East Greenland: Meddelelser om Grønland, v. 112, no. 3, p. 155.Google Scholar
Nielsen, E., 1942, Studies on Triassic Fishes from East Greenland 1. Glaucolepis and Boreosomus: Palaeozoologica Groenlandica, v. 1, p. 1403.Google Scholar
Nielsen, E., 1949, Studies on Triassic fishes from East Greenland 2. Australosomus and Birgeria: Palaeozoologica Groenlandica, v. 3, p. 1309.Google Scholar
Nielsen, E., 1961, On the Eotriassic fish faunas of central east Greenland, in Raasch, G.O., ed., Geology of the Arctic 1. Proceedings of the First International Symposium on Arctic Geology: Toronto, University Press, p. 255257.Google Scholar
Nybelin, O., 1977, Studies on Triassic fishes from East Greenland III—on Helmolepis gracilis Stensiö: Meddelelser om Grønland, v. 200, no. 2, p. 114.Google Scholar
Olsen, P.E., 1984, The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationships of holostean fishes: Journal of Vertebrate Paleontology, v. 4, p. 481499.Google Scholar
Orchard, M.J., and Zonneveld, J.-P., 2009, The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake area: lithostratigraphy, conodont biostratigraphy, and a new biozonation for the lower Olenekian (Smithian): Canadian Journal of Earth Sciences, v. 46, p. 757790.Google Scholar
Ørvig, T., 1978, Microstructure and growth of the dermal skeleton in fossil actinopterygian fishes: Boreosomus, Plegmolepis and Gyrolepis: Zoologica Scripta, v. 7, p. 125144.Google Scholar
Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., and Guex, J., 2006, New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery: Earth and Planetary Science Letters, v. 243, p. 463475.Google Scholar
Page, B.M., 1959, Geology of the Candelaria mining district, Mineral County, Nevada: Nevada Bureau of Mines, Bulletin, v. 56, p. 167.Google Scholar
Patterson, C., 1982, Morphology and interrelationships of primitive actinopterygian fishes: American Zoologist, v. 22, p. 241259.Google Scholar
Payne, J.L., Bush, A.M., Heim, N.A., Knope, M.L., and McCauley, D.J., 2016, Ecological selectivity of the emerging mass extinction in the oceans: Science, v. 353, p. 12841286.Google Scholar
Payne, J.L., and Clapham, M.E., 2012, End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?: Annual Reviews in Earth and Planetary Science, v. 40, p. 89111.Google Scholar
Piveteau, J., 1934, Paléontologie de Madagascar 21. Les poissons du Trias inférieur. Contribution à l’études des actinopterygians: Annales de Paléontologie, v. 23, p. 83178.Google Scholar
Piveteau, J., 1935, Ressemblances des faunes ichthyologiques du Groenland et du Spitzberg avec celle de Madagascar, au Trias inférieur: Compte Rendu Sommaire des Séances de la Société Géologique de France, v. 1935, p. 113114.Google Scholar
Poole, F.G., and Wardlaw, B.R., 1978, Candelaria (Triassic) and Diablo (Permian) formations in southern Toquima Range, Central Nevada, in Howell, D.G., and McDougall, K.A., eds., Mesozoic Paleogeography of the Western United States. Pacific Coast Paleogeography Symposium 2: Los Angeles, The Pacific Section, Society of Economic Paleontologists and Mineralogists, p. 271276.Google Scholar
Priem, F., 1924, Paléontologie de Madagascar 12. Les poisons fossils: Annales de Paléontologie, v. 13, p. 107132.Google Scholar
Puttick, M.N., Kriwet, J., Wen, W., Hu, S., Thomas, G.H., and Benton, M.J., 2017, Body length of bony fishes was not a selective factor during the biggest mass extinction of all time: Palaeontology, v. 60, p. 727741.Google Scholar
Regan, C.T., 1923, The skeleton of Lepidosteus, with remarks on the origin and evolution of the lower neopterygian fishes: Proceedings of the Zoological Society of London, v. 93, p. 445461.Google Scholar
Romano, C., Kogan, I., Jenks, J., Jerjen, I., and Brinkmann, W., 2012, Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution: Bulletin of Geosciences, v. 87, p. 543570.Google Scholar
Romano, C., Goudemand, N., Vennemann, T.W., Ware, D., Schneebeli-Hermann, E., Hochuli, P.A., Brühwiler, T., Brinkmann, W., and Bucher, H., 2013, Climatic and biotic upheavals following the end-Permian mass extinction: Nature Geoscience, v. 6, p. 5760.Google Scholar
Romano, C., Koot, M.B., Kogan, I., Brayard, A., Minikh, A.V., Brinkmann, W., Bucher, H., and Kriwet, J., 2016a, Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution: Biological Reviews, v. 91, p. 106147.Google Scholar
Romano, C., Ware, D., Brühwiler, T., Bucher, H., and Brinkmann, W., 2016b, Marine Early Triassic Osteichthyes from Spiti, Indian Himalayas: Swiss Journal of Palaeontology, v. 135, p. 275294.Google Scholar
Romano, C., Jenks., J.F., Jattiot, R., Scheyer, T.M., Bylund, K.G., and Bucher, H., 2017, Marine Early Triassic Actinopterygii from Elko County (Nevada, USA): implications for the Smithian equatorial vertebrate eclipse: Journal of Paleontology, v. 91, p. 10251046.Google Scholar
Romano, C., Argyriou, T., Krumenacker, L.J., and the Paris Biota Team, in press, Chondrichthyan teeth from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA): Geobios, doi:https://doi.org/10.1016/j.geobios.2019.04.001.Google Scholar
Rosen, D.E., Forey, P.L., Gardiner, B.G., and Patterson, C., 1981, Lungfishes, tetrapods, paleontology, and plesiomorphy: Bulletin of the American Museum of Natural History, v. 169, p. 159276.Google Scholar
Sallan, L.C., 2014, Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity: Biological Reviews, v. 89, p. 950971.Google Scholar
Schaeffer, B., 1952, The palaeoniscoid fish Turseodus from the Upper Triassic Newark Group: American Museum Novitates, v. 1581, p. 124.Google Scholar
Schaeffer, B., 1967, Late Triassic fishes from the western United States: Bulletin of the American Museum of Natural History, v. 35, p. 285342.Google Scholar
Schaeffer, B., and Mangus, M., 1976, An Early Triassic fish assemblage from British Columbia: Bulletin of the American Museum of Natural History, v. 156, p. 127216.Google Scholar
Schaeffer, B., Dunkle, D.H., and McDonald, N.G., 1975, Ptycholepis marshi Newberry, a chondrostean fish from the Newark Group of eastern North America: Fieldiana, Geology, v. 33, p. 205233.Google Scholar
Scheyer, T.M., Romano, C., Jenks, J., and Bucher, H., 2014, Early Triassic marine biotic recovery: the predators’ perspective: PLoS ONE, v. 9, e88987.Google Scholar
Schultze, H.-P., 2008, Nomenclature and homologization of cranial bones in actinopterygians, in Arratia, G., Schultze, H.-P., and Wilson, M.V.H., eds., Mesozoic Fishes 4. Homology and Phylogeny: München, Dr. Friedrich Pfeil, p. 2348.Google Scholar
Sheridan, J.A., and Bickford, D., 2011, Shrinking body size as an ecological response to climate change: Nature Climate Change, v. 1, p. 401406.Google Scholar
Smithwick, F.M., and Stubbs, T.L., 2018, Phanerozoic survivors: actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events: Evolution, v. 72, p. 348362.Google Scholar
Stensiö, E., 1921, Triassic fishes from Spitzbergen 1: Wien, Adolf Holzhausen, 307 p.Google Scholar
St. Hilaire, E.G., 1802. Histoire naturelle et description anatomique d'un nouveau genre de poisson du Nil nommé Polyptère: Musée Histoire Naturelle, Paris, v. 1, p. 5768.Google Scholar
Stensiö, E., 1932. Triassic fishes from East Greenland 1–2: Meddelelser om Grønland, v. 83, no. 3, p. 1305.Google Scholar
Su, T.-T., 1974, New Jurassic ptycholepid fishes from Szechuan, S.W. China: Vertebrata PalAsiatica, v. 12, p. 120.Google Scholar
Su, T.-T., 1993, New Jurassic ganoid fishes from northwestern Gansu, China: Vertebrata PalAsiatica, v. 31, p. 114.Google Scholar
Sun, Z., Tintori, A., Yaozhong, X., Lombardo, C., Peigang, N., and Dayong, J., 2017, A new non-parasemionotiform order of the Halecomorphi (Neopterygii, Actinopterygii) from the Middle Triassic of Tethys: Journal of Systematic Palaeontology, v. 15, p. 223240.Google Scholar
Tanner, V.M., 1936, A study of Utah fossil fishes with the description of a new genus and species: Proceedings of the Utah Academy of Sciences, Arts and Letters, v. 13, p. 8189.Google Scholar
Tintori, A., 1990, The actinopterygian fish Prohalecites from the Triassic of northern Italy: Palaeonotology, v. 33, p. 155174.Google Scholar
Tintori, A., Hitij, T., Jiang, D.-Y., Lombardo, C., and Sun, Z.-Y., 2014, Triassic actinopterygian fishes: the recovery after the end-Permian crisis: Integrative Zoology, v. 9, p. 394411.Google Scholar
Tintori, A., Lombardo, C., and Kustatscher, E., 2016, The Pelsonian (Anisian, Middle Triassic) fish assemblage from Monte Prà della Vacca/Kühwiesenkopf (Braies Dolomites, Italy): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 282, p. 181200.Google Scholar
Tong, J., Zhou, X., Erwin, D.H., Zuo, J., and Zhao, L., 2006, Fossil fishes from the Lower Triassic of Majiashan, Chaohu, Anhui Province, China: Journal of Paleontology, v. 80, p. 146161.Google Scholar
Tozer, E.T., 1965, Lower Triassic stages and ammonoid zones of Arctic Canada: Paper of the Geological Survey of Canada, v. 65, p. 114.Google Scholar
Uyeno, T., 1978, On some Lower Triassic fishes from Ankilokara, Madagascar: Bulletin of the National Science Museum, Series C (Geology & Paleontology), v. 4, p. 193198.Google Scholar
Véran, M., 1988, Les éléments accessoires de l'arc hyoïdien des poissons téléostomes (Acanthodiens et Osteichthyens) fossiles et actuels: Mémoires du Muséum Nationale d'Histoire Naturelle, Série C, v. 54, p. 188.Google Scholar
Véran, M., 1996, Le labial des poissons actinoptérygiens fossiles et actuels: Bulletin du Muséum Nationale d'Histoire Naturelle, 4ième Série, Séction C, v. 18, p. 155.Google Scholar
Verberk, W.C.E.P., and Atkinson, D., 2013, Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms: Functional Ecology, v. 27, p. 12751285.Google Scholar
Vogt, C., 1851, Zoologische Briefe. Naturgeschichte der lebenden und untergegangenen Thiere, für Lehrer, höhere Schulen und Gebildete aller Stände II: Frankfurt am Main, Literarische Anstalt, 640 p.Google Scholar
von Krafft, A., and Diener, C., 1909, Lower Triassic Cephalopoda from Spiti, Malla, Johar, and Byans: Palaeontologia Indica v. 6, p. 1186.Google Scholar
Wade, R.T., 1935, The Triassic fishes of Brookvale, New South Wales: London, British Museum (Natural History), 92 p.Google Scholar
Wade, R.T., 1940, Australian Triassic fishes: Journal and Proceedings of the Royal Society of New South Wales, v. 74, p. 377396.Google Scholar
Ware, D., Jenks, J.F., Hautmann, M., and Bucher, H., 2011, Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography: Swiss Journal of Geosciences, v. 104, p. 161181.Google Scholar
Ware, D., Bucher, H., Brayard, A., Schneebeli-Hermann, E., and Brühwiler, T., 2015, High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 440, p. 363373.Google Scholar
Ware, D., Bucher, H., Brühwiler, T., Schneebeli-Hermann, E., Hochuli, P.A., Roohi, G., Ur-Rehman, K., and Yaseen, A., 2018a, Griesbachian and Dienerian (Early Triassic) ammonoids from the Salt Range, Pakistan: Fossils and Strata, v. 63, p. 11175.Google Scholar
Ware, D., Bucher, H., Brühwiler, T., and Krystyn, L., 2018b, Dienerian (Early Triassic) ammonoids from Spiti (Himachal Pradesh, India): Fossils and Strata, v. 63, p. 177241.Google Scholar
Wen, W., Hu, S.X., Zhang, Q.Y., Benton, M.J., Kriwet, J., Chen, Z.Q., Zhou, C.Y., Xie, T., and Huang, J.Y., 2019, A new species of Platysiagum from the Luoping Biota (Anisian, Middle Triassic, Yunnan, South China) reveals the relationship between Platysiagidae and Neopterygii: Geological Magazine, v. 156, p. 669682.Google Scholar
White, E.I., 1932, On a new Triassic fish from north-east Madagascar: Annals and Magazine of Natural History, Series 10, v. 10, p. 8083.Google Scholar
White, E.I., 1933, New Triassic palaeoniscids from Madagascar: Annals and Magazine of Natural History, Series 10, v. 11, p. 118128.Google Scholar
White, E.I., and Moy-Thomas, J.A., 1940, VII.—Notes on the nomenclature of fossil fishes. Part II. Homonyms D–L: Journal of Natural History, Series 11, v. 6, no. 31, p. 98103.Google Scholar
Wignall, P.B., and Newton, R., 2003, Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction: Palaios, v. 18, p. 153167.Google Scholar
Wyld, S.J., 2000, Triassic evolution of the arc and backarc of northwestern Nevada, and evidence for extensional tectonism, in Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California: Geological Society of America Special Paper, v. 347, p. 185–207.Google Scholar
Xu, G.-H., and Shen, C.-C., 2015, Panxianichthys imparilis gen. et sp. nov., a new ionoscopiform (Halecomorphi) from the Middle Triassic of Guizhou, China: Vertebrata PalAsiatica, v. 53, p. 115.Google Scholar
Xu, G.-H., Shen, C.-C., and Zhao, L.J., 2014, Pteronisculus nielseni sp. nov., a new stem-actinopteran fish from the Middle Triassic of Luoping, Yunnan Province, China: Vertebrata PalAsiatica, v. 52, p. 364380.Google Scholar
Xu, G.-H., Gao, K.-Q., and Coates, M.I., 2015, Taxonomic revision of Plesiofuro mingshuica from the Lower Triassic of northern Gansu, China, and the relationships of early neopterygian clades: Journal of Vertebrate Paleontology, v. 35, e1001515.Google Scholar