Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T12:28:54.031Z Has data issue: false hasContentIssue false

Lower jaw of the Early Paleocene mammal Alveugena and its interpretation as a transitional fossil

Published online by Cambridge University Press:  14 July 2015

Deborah L. Rook*
Affiliation:
1Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus, Ohio 43212, USA,
John P. Hunter
Affiliation:
2Department of Evolution, Ecology, and Organismal Biology and School of Earth Sciences, The Ohio State University Newark, 1179 University Drive, Newark, Ohio 43055, USA,
Dean A. Pearson
Affiliation:
3Pioneer Trails Regional Museum, Paleontology Department, 12 First Avenue NE, Box 78, Bowman, North Dakota 58623, USA,
Antoine Bercovici
Affiliation:
4UMR 6118, Géosciences Rennes, Bat 15, Université Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France,
*
5Current address: Department of Geoscience, University of Wisconsin-Madison, 1215 W Dayton St., Madison, Wiscosin 53706, USA, <[email protected]>

Abstract

The Paleogene Order Taeniodonta Cope, 1876—peculiar heavy-bodied mammals, some with evergrowing cheek teeth—are grouped with the Late Cretaceous eutherian Cimolestes Marsh, 1889, along with a host of other taxa in a superordinal group, the Cimolesta. Taeniodonts were thought to have arisen from Cimolestes indirectly, through Paleocene Procerberus Sloan and Van Valen, 1965. The recently described Paleocene Alveugena Eberle, 1999, until now known only from the upper dentition, has been put forth as a transitional form between cimolestids and taeniodonts on phylogenetic and biostratigraphic grounds. An older taeniodont, the Late Cretaceous Schowalteria Fox and Naylor, 2003, has since been described, complicating taeniodont origins. We describe here a lower jaw that we refer to Alveugena from the lower part of the Ludlow Member of the Fort Union Formation in North Dakota. The lower jaw comes from strata of early Early Paleocene age (Puercan 1 North American Land Mammal Age) ~8.5 m above a Cretaceous-Paleogene boundary, identified using palynological criteria. A cladistic analysis is here presented using new data on Schowalteria and Alveugena, added to that of Cimolestes, Procerberus formicarum Sloan and Van Valen, 1965, P. grandis Middleton and Dewar, 2004, and Onychodectes. This analysis revealed Alveugena as the sister taxon of the taeniodonts but with a closer relationship to Cimolestes than Procerberus, suggesting that taeniodonts evolved from a Cimolestes-like ancestor. We discuss the age relations of early taeniodonts and related taxa and propose a scenario of ancestor-descendent relations that minimizes, but does not eliminate, implied stratigraphic gaps.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, J. D., Butler, R. F., Lindsay, E. H., Clemens, W. A., and Dingus, L. 1982. Upper Cretaceous-Paleocene biostratigraphy and magnetostratigraphy, Hell Creek and Tullock Formations, northeastern Montana. Geology, 10:153159.2.0.CO;2>CrossRefGoogle Scholar
Bercovici, A., Pearson, D. A., Nichols, D. J., and Wood, J. 2009. Biostratigraphy of selected K/T boundary sections in southwestern North Dakota, USA: Toward a refinement of palynological identification criteria. Cretaceous Research, 30:632658.CrossRefGoogle Scholar
Butler, P. M. 1961. Relationships between upper and lower molar patterns. International Colloquium on the Evolution of Mammals, Brussels, Belgium, 1:117126.Google Scholar
Clemens, W. A. and Russell, L. S. 1965. Mammalian fossils from the upper Edmonton Formation, p. 3240. In Vertebrate Paleontology in Alberta, University of Alberta Bulletin (Geology 2).Google Scholar
Cope, E. D. 1876. On the Taeniodonta, a new group of Eocene mammals. Proceedings of the National Academy of Sciences Philadelphia 28:39.Google Scholar
Cope, E. D. 1888a. The mechanical causes of the origin of the dentition of the Rodentia. The American Naturalist, 22:313.CrossRefGoogle Scholar
Cope, E. D. 1888b. Synopsis of the vertebrate fauna of the Puerco series. Transactions of the American Philosophical Society, 16:298361.CrossRefGoogle Scholar
Eberle, J. J. 1999. Bridging the transition between didelphodonts and taeniodonts. Journal of Paleontology, 73:936944.CrossRefGoogle Scholar
Eberle, J. J. and Lillegraven, J. A. 1998. A new important record of earliest Cenozoic mammalian history: Eutheria and paleogeographic/biostratigraphic summaries. Rocky Mountain Geology, 33:49117.Google Scholar
Fox, R. C. and Naylor, B. G. 2003. A Late Cretaceous taeniodont (Eutheria, Mammalia) from Alberta, Canada. Neues Jahrbuch für Geologie und Paläontologie: Abhandlungen, 229:393420.CrossRefGoogle Scholar
Goloboff, P. 1993. Pee-Wee and NONA. Computer programs and documentation, New York.Google Scholar
Hicks, J. F., Johnson, K. R., Obradovich, J. D., Tauxe, L., and Clark, D. 2002. Magnetostratigraphy and geochronology of the Hell Creek and basal Fort Union formations of southwestern North Dakota and a recalibration of the age of the Cretaceous–Tertiary boundary, p. 3555. In Hartman, J. H., Johnson, K. R., and Nichols, D. J. (eds.), The Hell Creek Formation and the Cretaceous–Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper, 361 p.CrossRefGoogle Scholar
Hu, D., Hou, L., Zhang, L., and Xu, X. 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature, 461:640643.CrossRefGoogle ScholarPubMed
Hunter, J. P., Pearson, D., and Hartman, J. 2003. Additions to the Puercan mammals of North Dakota and a framework for study of post-K/T vertebrate recovery. Journal of Vertebrate Paleontology, 3 Suppl:64A.Google Scholar
Johnston, P. A. and Fox, R. A. 1984. Paleocene and Late Cretaceous Mammals from Saskatchewan, Canada. Palaeontographica Abteilung A Band A186, Lieferung, 1-6:163222.Google Scholar
Lillegraven, J. A. 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, and review of marsupial-placental dichotomy in mammalian evolution. The University of Kansas Paleontological Contributions 50(Vertebrata 12), 122 p.Google Scholar
Lofgren, D. L., Lillegraven, J. A., Clemens, W. A., Gingerich, P. D., and Williamson, T. E. 2003. Paleocene biochronology: The Puercan through Clarkforkian land mammal ages, p. 43105. In Woodburne, M. O. (ed.), Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and geochronology. Columbia University Press, New York.Google Scholar
Marsh, O. C. 1889. Discovery of Cretaceous Mammalia. American Journal of Science, Series 3, 38:8192.CrossRefGoogle Scholar
Matthew, W. D. 1937. Paleocene faunas of the San Juan Basin, New Mexico. Transactions of the American Philosophical Society, 30:1510.CrossRefGoogle Scholar
McKenna, M. C. 1969. The origin and early differentiation of the therian mammals. Annals of New York Academy of Sciences, 167:217240.CrossRefGoogle Scholar
McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, p. 2146. In Luckett, W. P. and Szalay, E. S. (eds.), Phylogeny of the Primates. Plenum Press, New York.CrossRefGoogle Scholar
McKenna, M. C. and Bell, S. K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 p.Google Scholar
Middleton, M. D. 1983. Early Paleocene Vertebrates of the Denver Basin, Colorado. Unpublished , University of Colorado, 403 p.Google Scholar
Middleton, M. D. and Dewar, E. W. 2004. New mammals from the early Paleocene Littleton Fauna (Denver Formation, Colorado). Paleogene Mammals, New Mexico Museum of Natural History and Science Bulletin, 26:5180.Google Scholar
Nichols, D. J. and Johnson, K. R. 2002. Palynology and microstratigraphy of Cretaceous-Tertiary boundary sectons in southwestern North Dakota, p. 95143. In Hartman, J. H., Johnson, K. R., and Nichols, D. J. (eds.), The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361.Google Scholar
Peppe, D. J., Evans, D. A. D., and Smirnov, A. V. 2009. Magnetostratigraphy of the Ludlow Member of the Fort Union Formation (Lower Paleocene) in the Williston Basin, North Dakota. Geological Society of America Bulletin, 121:6579.Google Scholar
Polly, P. D., Le Comber, S. C., and Burland, T. M. 2005. On the occlusal fit of tribosphenic molars: Are we underestimating species diversity in the Mesozoic? Journal of Mammalian Evolution, 12:283299.CrossRefGoogle Scholar
Schoch, R. M. 1986. Systematics, functional morphology, and macro-evolution of the extinct mammalian order Taeniodonta. Peabody Museum Bulletin 42.Google Scholar
Simpson, G. G. 1931. A new classification of mammals. American Museum of Natural History Bulletin, 59:259293.Google Scholar
Sloan, R. E. and Van Valen, L. 1965. Cretaceous mammals from Montana. Science, 148:220227.CrossRefGoogle ScholarPubMed
Sweet, A.R., Braman, D. R., and Lerbekmo, J. F. 1990. Palynofloral response to K/T boundary events; a transitory interruption within a dynamic system, p. 457469. In Sharpton, L. V. and Ward, P. D. (eds.), Global Catastrophes in Earth History: An Interdisciplinary Conference On Impacts, Volcanism, and Mass Mortality. Geological Society of America Special Paper 247.CrossRefGoogle Scholar
Swisher, C. C. III, Dingus, L., and Butler, R. F. 1993. 40AR/39AR dating and magnetostratigraphic correlation of the terrestrial Cretaceous-Paleogene boundary and Puercan Mammal Age, Hell Creek-Tullock formations, eastern Montana. Canadian Journal of Earth Sciences, 30:19811996.CrossRefGoogle Scholar
Wenzel, J. W. 2002. Phylogenetic analysis: The basic method, p. 430. In DeSalle, R. (ed.), Techniques in Molecular Systematics and Evolution. Birkhauser Verlag, Basel, Switzerland.CrossRefGoogle Scholar
Winge, H. 1917. Udsigt over insektaedernes indbyrdes slaegtskab. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn, 68:83203.Google Scholar
Wood, C. B. and Clemens, W. A. 2001. A new specimen and a functional reassociation of the molar dentition of Batodon tenuis (Placentalia, incertae sedis), latest Cretaceous (Lancian), North America. Bulletin of the Museum of Comparative Zoology, 156(1):99118.Google Scholar
Wortman, J. L. 1896. The North American origin of Edentates. Science, 4:865–66.CrossRefGoogle ScholarPubMed
Wortman, J. L. 1897. The Ganodonta and their relationship to the Edentata. Bulletin of American Museum of Natural History, 9:59110.Google Scholar