Article contents
Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia
Published online by Cambridge University Press: 20 May 2016
Abstract
New fossils from the Neoproterozoic Ediacara fauna of South Australia are interpreted as the oldest known hexactinellid sponges. They occur within the Ediacara Member of the Rawnsley Quartzite (Pound Subgroup) from several locations in the Flinders Ranges. The new genus, Palaeophragmodictya, is characterized by disc-shaped impressions preserving characteristic spicular networks and is reconstructed as a convex sponge with a peripheral frill and an oscular disc at the apex.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Paleontological Society
References
Allison, P. A., and Briggs, D. E. G.
1991. Taphonomy of nonmineralized tissues, p. 25–70. In
Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy Releasing Data Locked in the Fossil Record. Plenum Press, New York.Google Scholar
Bengtson, S.
1990. Spicules, p. 24–37. In
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. (eds.), Early Cambrian fossils from South Australia. Memoir of the Association of Australasian Palaeontologists, 9:1–364.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N.
1990. Early Cambrian fossils from South Australia. Memoir of the Association of Australasian Palaeontologists, 9:1–364.Google Scholar
Bergström, J.
1990. Precambrian trace fossils and the rise of bilaterian animals. Ichnos, 1:3–13.Google Scholar
Brasier, M. D.
1989. On mass extinction and faunal turnover near the end of the Precambrian, p. 73–88. In
Donovan, S. K. (ed.), Mass Extinctions: Processes and Evidence. Belhaven Press, London.Google Scholar
Brasier, M. D.
1992. Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society, London, 149:621–629.Google Scholar
Chen, J., Bergström, J., Lindström, M., and Xianguang, H.
1991. Fossilized soft-bodied fauna. National Geographic Research and Exploration, 7:8–19.Google Scholar
Chen, J., Hou, X., and Li, G.
1990. New Lower Cambrian demosponge Quadrolaminiella (gen. nov.) from Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28:58–71.Google Scholar
Chen, J., Hou, X., and Lu, H.
1989. Lower Cambrian leptomitids (Demospongea), Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28:17–31.Google Scholar
Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K. G., and Adoutte, A.
1991. An analysis of the origin of metozoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. The EMBO Journal, 10:499–503.CrossRefGoogle Scholar
Christie-Blick, N.
1993. High-resolution sequence stratigraphy of the Wonoka canyons (Neoproterozoic), South Australia. Geological Society of America Abstracts with Programs, 25(6):A-67.Google Scholar
Conway Morris, S.
1993. The fossil record and the early evolution of metazoa. Nature, 361:219–225.Google Scholar
Daily, B.
1972. The base of the Cambrian and the first Cambrian faunas. University of Adelaide Centre for Precambrian Research Special Paper, 1:13–41.Google Scholar
Daily, B.
1973. Discovery and significance of basal Cambrian Uratanna Formation, Mt. Scott Range, Flinders Ranges, South Australia. Search, 4(6):202–205.Google Scholar
Fedonkin, M. A.
1985. Precambrian metazoans: the problems of preservation, systematics and evolution. Philisophical Transactions of the Royal Society, London, Series B, 311:27–45.Google Scholar
Fedonkin, M. A.
1992. Vendian faunas and the early evolution of Metazoa, p. 87–129. In
Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Gehling, J. G.
1986. Algal binding of siliciclastic sediments: a mechanism in the preservation of Ediacaran fossils. 12th International Sedimentological Congress, Canberra, Abstracts, p. 117.Google Scholar
Gehling, J. G.
1987. Earliest known echinoderm—a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa, 11:337–345.CrossRefGoogle Scholar
Gehling, J. G.
1988. A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa, 12:299–314.CrossRefGoogle Scholar
Gehling, J. G.
1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir, 20:181–224.Google Scholar
Germs, G. J. B.
1983. Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia. Special Publications Geological Society of South Africa, 11:89–114.Google Scholar
Glaessner, M. F.
1959. Precambrian Coelenterata from Australia, Africa and England. Nature, 183:1472–1473.Google Scholar
Glaessner, M. F.
1960. Precambrian fossils from South Australia. Proceedings of the 21st International Geological Congress, Copenhagen, Part 22:59–64.Google Scholar
Glaessner, M. F.
1976. A new genus of polychaete worms from the Late Precambrian of South Australia. Transactions of the Royal Society of South Australia, 100:169–170.Google Scholar
Glaessner, M. F.
1980.
Parvancorina—an arthropod from the Late Precambrian of South Australia. Annalen des Naturhistorischen Museums in Wien, 83:83–90.Google Scholar
Glaessner, M. F.
1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge University Press, Cambridge, 224 p.Google Scholar
Glaessner, M. F., and Wade, M.
1966. The late Precambrian fossils from Ediacara, South Australia, Palaeontology, 9:599–628.Google Scholar
Gravestock, D. I.
1984. Archaeocyatha from lower parts of the Lower Cambrian carbonate sequence in South Australia. Memoir of the Association of Australasian Palaeontologists, 2:1–139.Google Scholar
Haines, P. W.
1990. A late Proterozoic storm-dominated carbonate shelf sequence: the Wonoka Formation in the central and southern Flinders Ranges, p. 175–198. In
Jago, J. B. and Moore, P. S. (eds.), The evolution of a late Precambrian-Early Palaeozoic rift complex: the Adelaide Geosyncline, Special Publication 16, Geological Society of Australia Inc.
Google Scholar
Hall, J., and Clarke, J. M.
1899. A memoir on the Paleozoic reticulate sponges constituting the family Dictyospongidae. Memoir of the New York State Museum, 2, 350 p.Google Scholar
Jell, P. A., Jago, J. B., and Gehling, J. G.
1992. A new conocoryphid trilobite from the Lower Cambrian of the Flinders Ranges, South Australia. Alcheringa, 16:189–200.CrossRefGoogle Scholar
Jenkins, R. J. F.
1984. Interpreting the oldest fossil cnidarians. Palaeontographica Americana, 54:95–104.Google Scholar
Jenkins, R. J. F., Ford, C. H., and Gehling, J. G.
1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia, 30:101–119.CrossRefGoogle Scholar
Matthews, S. C., and Missarzhevsky, V. V.
1975. Small shelly fossils of Late Precambrian and early Cambrian age: a review of Recent work. Quarterly Journal of the Geological Society, London, 131:289–304.Google Scholar
Mount, J. F.
1989. Re-evaluation of unconformities separating the “Ediacaran” and Cambrian Systems, South Australia. Palaios, 4:366–373.Google Scholar
Mount, J. F., and Mcdonald, C.
1992. Influence of changes in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic-Early Cambrian metazoan radiation, Australia. Geology, 20:1031–1034.2.3.CO;2>CrossRefGoogle Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., and Anderson, M. M.
1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:1277–1293.CrossRefGoogle Scholar
Nedin, C., and Jenkins, R. J. F.
1991. Re-evaluation of unconformities separating the “Ediacaran” and Cambrian Systems, South Australia. Comment. Palaios, 6:102–105.Google Scholar
Norris, R.
1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia, 22:381–393.Google Scholar
Pickett, J. W.
1983. An annotated bibliography and review of Australian fossil sponges. Association of Australasian Palaeontologists Memoir, 1:93–120.Google Scholar
Reid, R. E. H.
1958. A Monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland, Part 1, p. i–xlvi. Palaeontographical Society, London.Google Scholar
Rigby, J. K.
1986. Sponges of the Burgess shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, Memoir
2, 105 p.Google Scholar
Rigby, J. K., and Keyes, R. Jr.
1990. First report of hexactinellid dictyosponges and other sponges from the Upper Mississippian Bangor Limestone, northwestern Alabama. Journal of Paleontology, 64:886–897.Google Scholar
Runnegar, B. N., and Fedonkin, M. A.
1992. Proterozoic metazoan body fossils, p. 369–395. In
Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, New York.Google Scholar
Schmidt, O.
1870. Grundzüge einer Spongier-fauna des atlantischen Gebietes. Leipzig, 88 p.Google Scholar
Seilacher, A.
1984. Late Precambrian and Early Cambrian Metazoa: Preservational or real extinctions? p. 159–168. In
Holland, H. D., and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution, (Dahlem Konferenzen). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Seilacher, A.
1989. Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia, 22:229–239.CrossRefGoogle Scholar
Seilacher, A.
1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607–613.CrossRefGoogle Scholar
Sokolov, B. S., and Fedonkin, M. A.
1984. The Vendian as the Terminal System of the Precambrian. Episodes, 7:12–19.CrossRefGoogle Scholar
Sprigg, R. C.
1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions, Royal Society of South Australia, 71:212–224.Google Scholar
Sprigg, R. C.
1949. Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, Kimberley district, Western Australia. Transactions of the Royal Society of South Australia, 73:72–99.Google Scholar
Steiner, M., Mehl, D., Reitner, J., and Erdtmann, B.-D.
1993. Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze platform (China). Berliner Geowissenschafte Abhandlungen (E), 9:293–329.Google Scholar
Sun, W.
1989. Subdivisions and correlations of the Upper Precambrian in China and Australia. Palaeontologia Cathayana, 4:1–22.Google Scholar
Tang, T., Zhang, J., and Jiang, X.
1978. Discovery and significance of the Late Sinian fauna from Western Hunan and Hubei. Acta Stratigraphica Sinica, 2:32–45. (In Chinese.)Google Scholar
Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Louttt, T. S., and Hardenbol, J.
1988. An overview of the fundamentals of sequence stratigraphy and key definitions, p. 39–45. In
Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., and C. Van Wagoner, J. (eds.) Sea-Level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists Special Publication, 42.Google Scholar
Wade, M.
1968. Preservation of the soft-bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia, 1:238–267.Google Scholar
Wade, M.
1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 15:197–225.Google Scholar
Wainright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K.
1993. Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science, 260:340–342.CrossRefGoogle ScholarPubMed
Zhang, X., and Pratt, B. R.
1994. New and extraordinary Early Cambrian sponge spicule assemblage from China. Geology, 22:43–46.2.3.CO;2>CrossRefGoogle Scholar
- 207
- Cited by