Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T05:53:27.319Z Has data issue: false hasContentIssue false

Latest Carboniferous (Late Gzhelian) Fusulinids from Timor Leste and their Paleobiogeographic Affinities

Published online by Cambridge University Press:  15 October 2015

Vladimir I. Davydov
Affiliation:
Permian Research Institute, Boise State University, 1910 University Drive, Boise, ID 83725, USA,
David W. Haig
Affiliation:
Centre for Petroleum Geoscience and CO2 Sequestration, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia; ;
Eujay McCartain
Affiliation:
Centre for Petroleum Geoscience and CO2 Sequestration, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia; ;

Abstract

An uppermost Gzhelian bioherm discovered in the central highlands of Timor Leste contains abundant foraminifera belonging to 17 genera. Representatives of the families Biseriamminidae, Biwaellidae, Bradyinidae, Cornuspiridae, Lasiodiscidae, Palaeotextulariidae, Pseudotaxidae, Ozawainellidae, Schubertellidae, Schwagerinidae, Staffellidae and Textrataxidae are present, including 21 species referred to known types and 12 species left in open nomenclature. Two new Schwagerina species are described: Schwagerina timorensis new species, and Schwagerina maubissensis new species. The assemblage belongs to the uppermost Gzhelian Schwagerina robusta–Ultradaixina bosbytauensis Zone although a possible lowest Asselian correlation cannot be excluded (the name Ultradaixina is controversial and sometimes synonymized as Bosbytauella. The case to resolve this issue has been submitted to the Bulletin of Zoological Nomenclature). The bioherm is the oldest carbonate unit so far recorded from the Maubisse Formation and the oldest sedimentary unit biostratigraphically dated in Timor. This discovery has implications for the latest Carboniferous–earliest Permian climate history of Timor that lay in the northern part of the north-south East Gondwana rift system along which the western margin of Australia later developed. The highest peak in fusulinid diversity within the Pennsylvanian–Cisuralian interval and a major marine transgression documented in many regions in Northern Pangaea took place during the latest Gzhelian to earliest Asselian and evidence for this is now extended to southern Pangaea. Cluster analysis, using the Jaccard similarity index at species level, of late Gzhelian fusulinids from 16 regions has been performed. This shows that the Timor fauna is most closely related to faunas from South China and the Changning-Menlian region of Yunnan (China). The assemblages here are distinct from those of three biogeographic regions (Arctic, Uralo-Asian and Irano-Taurids) recognized within the Tropical belt.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alksne, A. E. 1976. Novye vidy daixin iz verkhnekamennougol'nykh otlozhenyi Bashkirii. New species of genus Daixina from the Upper Carboniferous depositis of Bashkiria, Russia. Paleontologichesky Zhurnal, 2:2933. (In Russian) Google Scholar
Angiolini, L., Carabelli, L., and Gaetani, M. 2005. Middle Permian brachiopods from Chios Island (Greece) and their paleobiogeographical significance: new evidences for a Gondwanan affinity of the Upper Unit. Journal of Systematic Palaeontology, 3:169185.Google Scholar
Angiolini, L., Crippa, G., Muttoni, G., and Pignatti, J. 2013. Guadalupian (Middle Permian) paleobiogeography of the Neotethys Ocean. Gondwana Research, 24:173184.Google Scholar
Audley-Charles, M. G. 1968. The geology of Portuguese Timor. Geological Society of London, Memoir, 4:175.Google Scholar
Beavington-Penney, S. J. and Racey, A. 2004. Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Science Reviews, 67:219265.Google Scholar
Beede, J. W. 1916. New species of fossils from the Pennsylvanian and Permian rocks of Kansas and Oklahoma. Indiana University Studies, Study 29, 3:515.Google Scholar
Bensh, F. R. 1962. Pozdnekamennougol'nye i rannepermskie fuzulinidy Severnoi Fergany. Late Carboniferous and early Permian fusulinids of Northern Fergana, p. 186252. In Verkhov, V. I. (ed.), Stratigraphy and paleontology of Uzbekistan and surrounding areas. Book 1. Akademy of Sciences of Uzbekistan, Tashkent. (In Russian) Google Scholar
Boardman, D. R. II, Wardlaw, B. R., and Nestell, M. K. 2009. Stratigraphy and Conodont Biostratigraphy of the Uppermost Carboniferous and Lower Permian from the North American Midcontinent. Kansas Geological Survey, 253 p.Google Scholar
Boudagher-Fadel, M. K. 2008. Evolution and Geological Significance of Larger Benthic Foraminifera. Elsevier, Amsterdam, 540 p.Google Scholar
Charlton, T. R., Barber, A. J., Harris, R. A., Barkham, S. T., Bird, P. R., Archbold, N. W., Morris, N. J., Nicoll, R. S., Owen, H. G., Owens, R. M., Sourauf, J. E., Taylor, P. D., Webster, G. D., and Whittaker, J. E. 2002. The Permian of Timor: stratigraphy, palaeontology and palaeogeography. Journal of Asian Earth Sciences, 20:719774.CrossRefGoogle Scholar
Chernysheva, N. E. 1941. A new genus of foraminifers from the Tournaisian deposits of the Urals. Doklady Akademii Nauk SSSR, 32 (1):6970.Google Scholar
Davydov, V. I. 1982. Zonal'nye i yarusnye podrazdeleiya po fuzulinidam verkhnego karbona yu-go-vostochnogo Darvaza. Zonal and stadial subdivision on the basis of fusulinid studies of Upper Carboniferous of South-West Darvaz, Tajikistan. Ph.D. Summary, St. Petersburg, Russia, 20 p. (In Russian) Google Scholar
Davydov, V. I. 1984 a. K probleme proiskhozhdeniya shvagerin. On the problem of origin of Schwagerins. Paleontological Journal 4:316. (In Russian) Google Scholar
Davydov, V. I. 1984 b. Zonal'nye i yarusnye podrazdeleiya verkhnego karbona yugo-vostochnogo Darvaza. Fusulinid zonal subdivisions of the Upper Carboniferous of the southwestern Darvaz. Bulletin of Moscow Society of Natural Studies, Geological Series, 59:4157. (In Russian) Google Scholar
Davydov, V. I. 1986 a. Fusulinids of Carboniferous–Permian boundary beds of Darvaz, p. 103125. In Chuvashov, B. I., Leven, E. Ya., and Davydov, V. I. (eds.), Carboniferous–Permian Boundary beds of the Urals, Pre-Urals area and Central Asia. Nauka Publishing House, Moscow. (In Russian) Google Scholar
Davydov, V. I. 1986 b. Upper Carboniferous and Asselian fusulinids of the Southern Urals, p. 77103. In Chuvashov, B. I., Leven, E. Ya., and Davydov, V. I. (eds.), Carboniferous–Permian Boundary beds of the Urals, Pre-Urals and Central Asia. Nauka Publishing House, Moscow. (In Russian) Google Scholar
Davydov, V. I. 1986 c. On phylogenetic criteria of evaluation of features in systematics of foraminifera (exemplified on fusulinids), Third International Symposium on Benthic Foraminifera, Geneve, Abstract, p. 35.Google Scholar
Davydov, V. I. 1990. Zonal fusilinid subdivisions of Gzhelian in Donets Basin and Pre-Donets Trough, p. 52–69, Problems of Modern Micropaleontology. Volume 34. Nauka, Leningrad. (In Russian) Google Scholar
Davydov, V. I. 1992. Subdivision and correlation of Upper Carboniferous and Lower Permian deposits in Donets Basin according to fusulinid data. Soviet Geology, 5:5361. (In Russian) Google Scholar
Davydov, V. I. 1995. The Carboniferous–Permian boundary in South China. Permophiles, 26:911 Google Scholar
Davydov, V. I. 1988. About a phylogenetic criterion of weighing specific features in foraminifer systematics (exemplified by fusulinids). Revue de Paleobiologie, Special Issue, 2:4755.Google Scholar
Davydov, V. I. 2011. Taxonomy, nomenclature and evolution of the early schubertellids (Fusulinida, Foraminifera). Acta Palaeontologica Polonica, 56:181194.Google Scholar
Davydov, V. I., Haig, D. W., and Mccartain, E. 2013. A warming spike at the latest Carboniferous as recorded by a fusulinid-rich bioherm in Timor Leste: implications for deglaciation in the East Gondwana rift system. Palaeogeography, Palaeocimatology and Palaeogeography, 376:2238.Google Scholar
Davydov, V. I., Korn, D., and Schmitz, M. D. 2012. The Carboniferous Period, p. 603651. In Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. (eds.), The Geologic Time Scale 2012, Volume 2. Elsevier, Amsterdam.CrossRefGoogle Scholar
Davydov, V. I. and Kozur, H. 1997. Position of the Carboniferous/Permian Boundary in the Carnic Alps compared with the stratotype region, p. 123130. In Podemski, S. D.-J. M., Jureczka, J. and Wagner, R. (eds.), Proceeding of the XIII International Congress on the Carboniferous and Permian. Volume 1, Warszawa.Google Scholar
Davydov, V. I., Nilsson, I., and Stemmerik, L. 2001. Fusulinid zonation of the Upper Carboniferous Kap Jungersen and Foldedal Formations, southern Amdrup Land, eastern north Greenland. Bulletin of the Geological Society of Denmark, 48:3177.CrossRefGoogle Scholar
Davydov, V. I., Schiappa, T. A., and Snyder, W. S. 2003. Testing the Sequence Stratigraphy Model: response of fusulinacean fauna to sea level fluctuations (examples from Pennsylvanian and Cisuralian of Pre-Caspian-southern Urals Region, p. 359375. In Olson, H. C., and Leckie, R. M., (eds.), Micropaleontologic Proxies for Sea-Level Changes and Stratigraphic Discontinuities. SEPM Special Publication 75.Google Scholar
Dunbar, C. O. and Henbest, L. G. 1930. The fusilinid genera Fusulina, Fusulinella, and Wedekindella . American Journal of Science, 20:357364.Google Scholar
Dunbar, C. O. and Skinner, J. W. 1931. New fusulinid genera from the Permian of west Texas. American Journal of Science, 22:252268.Google Scholar
Dunbar, C. O. and Skinner, J. W. 1936. Schwagerina versus Pseudoschwagerina and Paraschwagerina . Journal of Paleontology, 10:8391.Google Scholar
Dunbar, C. O. and Skinner, J. W. 1937. Permian Fusulinidae of Texas. University of Texas Bulletin, Report, 3701:517825.Google Scholar
Dunbar, C. O., Skinner, J. W., and King, R. E. 1935. Dimorphism in Permian fusulines. University of Texas Bulletin, Report, 3501:173190.Google Scholar
Dutkevich, G. A. 1934. Some new species of Fusulinidae from the upper and middle Carboniferous of Verkhne-Chussovskye Gorodki on the Chussovaya river (western slope of the middle Ural), 36:5890.Google Scholar
Ehrenberg, S.N., Pickard, N. A. H., Svana, T. A., Nilsson, I., and Davydov, V. I. 2000. Sequence stratigraphy of the inner Finnmark carbonate platform, Barents Sea: correlation between well 7128/6-1 and the shallow IKU wells. Norsk Geologisk Tidsskrift, 80:129162.CrossRefGoogle Scholar
Ekhlakov, Y. A. and Zolotova, V. P. 1986. The sections of the Carbonifeorus and Permian boundary beds in Kos'va and Berezovaya Rivers., p. 1218. In Chuvashov, B. I., Leven, E. Y., and Davydov, V. I. (eds.), Carboniferous–Permian Boundary beds of the Urals, Pre-Urals and Central Asia. Nauka Publishing House, Moscow. (In Russian) Google Scholar
Forbes, C. L. 1960. Carboniferous and Permian Fusulinidae. Palaeontology, 2:210225.Google Scholar
Forke, H. C., Kahler, F., and Krainer, K. 1998. Sedimentology, microfacies and stratigraphic distribution of foraminifers of the lower “Pseudoschwagerina” Limestone (Rattendorf Group, Late Carboniferous), Carnic Alps (Austria/Italy). Senckenbergiana Lethaea, 78 (1–2):139.Google Scholar
Fursenko, A. V. 1958. Main stages of evolution of foraminifera fauna in geological past. Transactions of Institute of Geology of Belorussian Academy of Sciences, 1:1029. (In Russian) Google Scholar
Gaetani, M., Angiolini, L., Ueno, K., Nicora, A., Stephenson, M. H., Sciunnach, D., Rettori, R., Price, G. D., and Sabouri, J. 2009. Pennsylvanian–Early Triassic stratigraphy in the Alborz Mountains (Iran). Geological Society Special Publications, 312:79128.Google Scholar
Gageonnet, R. and Lemoine, M. 1958. Contribution à la Connaissance de la Géologie de la Province Portugaise de Timor. Ministério do Ultramar, Junta de Investigaçóes do Ultramar, Estudos, Ensaios e Documentos, 48:1134.Google Scholar
Galloway, J. J. 1933.A Manual of Foraminifera, p. 483. Principia Press, Bloomington, Indiana.Google Scholar
Ganelina, R. A. 1951. Eostaffella and Millerella from the Lower Carboniferous Visean and Namurian stages of the western flank of the Moscow Basin, p. 179–210. Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologo-Razvedochnogo Instituta (VNIGRI), Novaya Seriya, Volume 56. Gostoptekhizdat, Leningrad. (In Russian) Google Scholar
Groves, J. R. and Lee, A. 2008. Accelerated rates of foraminiferal origination and extinction during the late Paleozoic ice age. Journal of Foraminiferal Research, 38:7484.CrossRefGoogle Scholar
Grozdilova, L. P. and Lebedeva, N. S. 1950. Some species of Staffella from the Middle Carboniferous of the western slope of the Urals, p. 546. Mikrofauna SSSR, Trudy, Vsesoyuznogo Neftyanogo Nauchno—lssledovatel'skogo Geologo-Razvedochnogo lnstituta (VNIGRI), Sbomik 3, Novaya Seriya, vyp. 50, Gostoptekhizdat, Leningrad. (In Russian) Google Scholar
Hammer, Ø. and Harper, D. A. T. 2006. Paleontological Data Analysis. Blackwell Publishing, Oxford, 351 p.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4 (1, art. 4):9 http://palaeo-electronica.org/2001_2001/past/issue2001_2001.htm.Google Scholar
Hoare, R. D. and Sturgeon, M. T. 1994. Small Fusulinids from the Pennsylvanian of Ohio. Paleontological Society Memoir 38, 21 p.Google Scholar
Hohenegger, J. 2004. Depth coenoclines and environmental considerations of western Pacific larger Foraminifera. Journal of Foraminiferal Research, 34:933.Google Scholar
James, N. P., 1997. The cool-water carbonate depositional realm. SEPM Special Publication 56, p. 120.CrossRefGoogle Scholar
Keep, M. and Haig, D. W. 2010. Deformation and exhumation in Timor: distinct stages of a young orogeny. Tectonophysics, 483:93111.Google Scholar
Kireeva, G. D., Shcherbovich, S. F., Dobrokhotova, S. V., Ketat, O. B., Malkovsky, F. S., Semina, S. A., Chernova, I. A., and Yagofarova, F. Z. 1971. Schwagerina vulgaris and Schwagerina fusiformis zone of the Asselian Stage of the Russian Platform and the western slope of the southern Urals. Voprosy Mikropaleontologii, 14:70102. (In Russian) Google Scholar
Kobayashi, F. 1973. Fusulinids of the Nagaiwa Formation. Transactions and Proceedings of the Palaeontological Society of Japan. New Series, 92:200219.Google Scholar
Kobayashi, F. and Altiner, D. 2008. Fusulinoidean faunas from the Upper Carboniferous and Lower Permian platform limestone in the Hadim area, central Taurides, Turkey. Rivista Italiana di Paleontologia e Stratigrafia, 114 (2):191232.Google Scholar
Kobayashi, F. and Ishii, K.-I. 2003. Paleobiogeographic analysis of Yahtashian to Midian fusulinacean faunas of the Surmaq Formation in the Abadeh region, central Iran. Journal of Foraminiferal Research, 33:155165.Google Scholar
Konovalova, M. V. 1991. Stratigraphy and fusulinids of Upper Carboniferous and Lower Permian of Timan-Pechora oil- and gas-bearing province. Nedra Publishing House, Moscow, 201 p. (In Russian) Google Scholar
Korn, D., Titus, A. L., Ebbighausen, V., M. R. H., , and Sudar, M. N. 2012. Early Carboniferous (Mississippian) ammonoid biogeography. Geobios, 45:6777.Google Scholar
Krainer, K. and Davydov, V. 1998. Facies and biostratigraphy of the Late Carboniferous/Early Permian sedimentary sequence in the Carnic Alps (Austria/Italy). Geodiversitas, 20:643662.Google Scholar
Lee, J. S. 1927. Fusulinidae of North China. Paleontologica Sinica. Series B, 4(1), 172 p.Google Scholar
Leven, E. Y. 2009. Upper Carboniferous and Permian of the western Tethys: fusulinids, stratigraphy, paleogeography, Moscow, 237 p. (In Russian) Google Scholar
Leven, E. Y. and Gorgij, M. N. 2006. Gzhelian fusulinids first discovered in Central Iran. Stratigraphy, Geological Correlations, 14:1929.CrossRefGoogle Scholar
Leven, E. and Gorgij, M. A. 2011. First record of Gzhelian and Asselian Fusulinids from the Vazhnan Formation (Sanandaj–Sirjan zone of Iran). Stratigraphy and Geological Correlation, 19:486501.Google Scholar
Leven, E. Y. and Shcherbovich, S. F. 1978. Fuzulinidy i stratigrafiya assel'skogo yarusa Darvaza. Fusulinids and stratigraphy of the Asselian Stage of the Darvaz Range. Nauka, Moscow, 162 p. (In Russian) Google Scholar
Leven, E. J. and Taheri, A. 2003. Carboniferous–Permian stratigraphy and fusulinids of east Iran; Gzhelian and Asselian deposits of the Ozbak-Kuh region. Rivista Italiana di Paleontologia e Stratigrafia, 109:399415.Google Scholar
Mamet, B. L. 1974. Taxonomic note on Carboniferous Endothyracea. Journal of Foraminiferal Research, 4:200204.Google Scholar
Mamet, B., Mikhailoff, N., and Mortelmans, G. 1970. La stratigraphie du Tournaisien et du Viseen inferieur de Landehes. Comparaison avec les coupes du Tournaisis et du bord nord du synclinal de Namur. Memoires de la Societe Belge de Geologie, de Paleontologie et d'Hydrologie, 8 (9):181.Google Scholar
Makhlina, M. K. and Isakova, T. N. 1997. Melekhovian Horizon: A new stratigraphic unit of the Gzhelian Stage, Upper Carboniferous (East European Platform). Stratigraphy, Geological Correlations, 5:458467.Google Scholar
Maslo, A. and Vachard, D. 1997. Inventaire critique des Eostaffellinae (Foraminiferes) du Carbonifere. Reappraisal of the Carboniferous eostaffellinids (Foraminifera). Revue de Micropaleontologie, 40:3969.Google Scholar
Metcalfe, I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20:551566.Google Scholar
Miklukho-Maclay, A. D. 1949. Verkhnepaleozojskie fuzulinidy Srednej Azii (Fergana, Darvaz i Pamir), Monografiya LGU, Leningrad. 127 p. (In Russian) Google Scholar
Möeller, V. 1877. Über Fusulinen und änliche Foraminif-Formen des russiche Kohlenkalks (Vorläufige Notiz). Neues Minerie Geologie und Paläontologie, p. 139146.Google Scholar
Morikawa, R. and Isomi, H. 1960. A new genus, Biwaella, Schwagerina-like Schubertella. Science Reports of the Saitama University. Series B: Biology and Earth Sciences, 3:301305.Google Scholar
Morikawa, R. and Kobayashi, N. 1960. Two new species of Oketaella from Kanto massif, Japan. Science Reports of the Saitama University. Series B: Biology and Earth Sciences, 3:307312.Google Scholar
Murray, J. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge University Press, Cambridge, 426 p.Google Scholar
Nassichuk, W. W. and Lin, R. 1992. Ammonoids and Fusulinaceans near the Carboniferous-Permian Boundary in the Canadian Arctic Archipelago. Permophiles, 21:1115.Google Scholar
Nassichuk, W. W. and Wilde, G. L. 1977. Permian fusulinaceans and stratigraphy at Blind Fiord, southwestern Ellesmere Island. Bulletin Geological Survey of Canada, 268:160.Google Scholar
Nilsson, I. and Davydov, V. I. 1997. Fusulinid biostratigraphy in Upper Carboniferous (Gzhelian) and Lower Permian (Asselian–Sakmarian) succession in Spitsbergen, Arctic Norway. Permophiles, 30:1827.Google Scholar
Nogami, Y. 1963. Fusulinids from Portuguese Timor. Memoirs of the College of Science, University of Kyoto, Series B, Geology and Mineralogy, 30:5969.Google Scholar
Rauser-Chernousova, D. M. 1936. On the renaming of the genus Schwagerina and Pseudofusulina proposed by Dunbar and Skinner. Academy of Sciences of the URSS, B., Ser. Geol., 4:573584. (In Russian) Google Scholar
Rauser-Chernousova, D. M. 1985. Sistematika semeystva Staffellidae (Fusulinida). Systematics of the family Staffellidae, Fusulinida. Voprosy Mikropaleontologii, 27:523. (In Russian) Google Scholar
Rauser-Chernousova, D. M., Bensh, F. R., Vdovenko, M. V., Gibshman, N. B., Leven, E. Y., Lipinia, O. A., Reitlinger, E. A., Solovieva, M. N., and Chediya, I. O. 1996. Sprovochnik po sistematike foramininfer Paleozoya (endothyroidi, fusulinoidi). The Guide on the Systematic of Paleozoic Foraminifera (endothyroids and fusulinids). Nauka, Moscow. 206 p. (In Russian) Google Scholar
Rauser-Chernousova, D. M., Chernysheva, N. E., Glebovskaya, E. M., Grozdilova, L. P., Lipina, O. A., Suleimanov, I. S., and Vissarionova, A. Y. 1948. Stratigrafiya i foraminifery nizhnego karbona Russkoi platformy i Priuralya. Trudy-Geologicheskogo Instituta, Akademiya Nauk SSSR, 62, no.19, 263 p. (In Russian) Google Scholar
Rauser-Chernousova, D. M., Gryzlova, N. D., Kireeva, G. D., Leontovich, G. E., Safonova, T. P., and Chernova, E. I. 1951. Middle Carboniferous fusulinids in the Russian platform and adjacent area. The Guide-book. Academy of Sciences of the USSR, Moscow, 380 p. (In Russian) Google Scholar
Rauser-Chernousova, D. M. and Shcherbovich, S. F. 1958. O shvagerinovom gorizonte tsentral'noi chasti Russkoi Platformy. About schwagerins horizons in the Central part of the Russian Platform, p. 356. In Menner, V. V. (ed.), Transactions of Geological Institute, Academy of Sciences of the USSR. Academy of Sciences of the USSR, Moscow. (In Russian) Google Scholar
Reitlinger, E. A. 1950. Foraminifery srednekamennougolnykh otlozhenii tsentralnoi chasti Russkoi platformy (isklyuchaya sem. Fusulinidae). Trudy-Geologicheskiy Institut, Akademiya Nauk SSSR, 126 (47):1111. (In Russian) Google Scholar
Reitlinger, E. A. 1956. Novoe semeistvo Lasiodiscidae. Voprosy micropaleontologii, 1:6977. (In Russian) Google Scholar
Remizova, S. T. 1995. Foraminifers and biostratigraphy of Upper Carboniferous of the Northern Timan, Syktyvkar, 128 p. (In Russian) Google Scholar
Riding, R. and Barkham, S. T. 1999. Temperate water Shamovella from the Lower Permian of West Timor, Indonesia. Alcheringa, 23:2129.Google Scholar
Ross, C. A. 1965. Fusulinids from the Cyathophyllum limestone, central Vestpitsbergen. Contributions from the Cushman Foundation for Foraminiferal Research, 16, Part 2:7486.Google Scholar
Ross, C. A. 1982. Paleobiology of fusulinaceans. Proceedings North American Paleontological Convention, 3:441445.Google Scholar
Ross, C. A. 1995. Permian fusulinaceans, p. 167185. In Scholle, P. A., Peryt, T. M., and Ulmer-Scholle, D. S. (eds.), Permian of Northern Pangea. Vol. 1: Paleogeography, Paleoclimate, Stratigraphy. Springer-Verlag, Berlin.Google Scholar
Ross, C. A. and Dunbar, C. O. 1962. Faunas and correlation of the late Paleozoic rocks of northeast Greenland; Part 2, Fusulinidae. Meddelelser om Gronland, 167 (5):155.Google Scholar
Ross, C. A. and Ross, J. R. P. 1995. Foraminiferal zonation of late Paleozoic depositional sequences. Marine Micropaleontology, 26:469478.Google Scholar
Shcherbovich, S. E. 1969. The late Gzhelian and Asselian Fusulinids of Pricaspian syneclise. Transactions of Geological Institute of Academy of Sciences of USSR, 176, 82 p. (In Russian) Google Scholar
Schmitz, M. D. and Davydov, V. I. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian–Early Permian (Cisuralian) time scale, and pan-Euramerican chronostratigraphic correlation.GSA Bulletin, 124:549577.Google Scholar
Schubert, R. 1915. Die Foraminiferen des jilngeren Palaozoikums von Timor. Palaontologie von Timor, 2:4759.Google Scholar
Schultze, M. S. 1854. Üeber den Organismus der Polythalamien (Foraminiferen), nebst Bemerkungen über die Rhizopoden im Allgemeinen. Wilhelm Engelmann, Leipzig Google Scholar
Shen, S. Z., Xie, J. F., Zhang, H., and Shi, G. R. 2009. Roadian–Wordian (Guadalupian Middle Permian) global palaeobiogeography of brachiopods. Global and Planetary Change, 65:166181.CrossRefGoogle Scholar
Shen, S. Z., Zhang, H., Shi, G. R., Li, W. Z., Xie, J. F., Mu, L., and Fan, J. X., 2013. Early Permian (Cisuralian) global brachiopod palaeobiogeography. Gondwana Research, 24:104124.Google Scholar
Sjomina, S. A. 1961. Stratigrafiya i foraminifery (fuzulinidy) shvagerinovogo gorizonta Oksko-Tsninskogo podnyatiya [Stratigraphy and Foraminifers (Fusulinids) from the Schwagerina-Horizon of the Oka-Tsna Swell]. Nauka, Moscow. (In Russian) Google Scholar
Skinner, J. W. 1931 a. Primitive fusulinids of the mid-continent region. Journal of Paleontology, 5:253259.Google Scholar
Skinner, J. W. 1931 b. New Permo–Pennsylvanian Fusulinidae from northern Oklahoma. Journal of Paleontology, 5:1622.Google Scholar
Skinner, J. W. and Wilde, G. L. 1966. Permian fusulinids from Pacific Northwest and Alaska. University of Kansas Paleontological Contributions, Paper 4:165.Google Scholar
Solovieva, M. N. 1980. Mutatsii kak oblast', opisivaemaya diskonkordantnymi korrelyatsiyami i nekotorye voprosy sistematiki foraminifer. Mutations and a subject described by disconcordant correlations and some questions regarding foraminifera systematics. Voprosy Mikropaleontologii, 23:322. (In Russian) Google Scholar
Solovieva, M. N. 1987. O statuse i ob'eme roda Schellwienia Staff et Wedekind, 1910. About status and the taxonomy of the genus Schellwienia Staff and Wedekind, 1910. Voprosy Mikropaleontologii, 28:7677. (In Russian) Google Scholar
Staff, H. V. and Wedekind, R. 1910. Der oberkarbone Foraminiferen-Sapropelit Spitzbergens. The Upper Carboniferous foraminiferal sapropel of Spitsbergen. Bulletin Uppsala Universitet, Mineralogisk-geologiska Institut, 10:81123.Google Scholar
Thompson, M. L. 1949. The Permian fusulinids of Timor. Journal of Paleontology, 23:182192.Google Scholar
Thompson, M. L. 1954. American Wolfcampian fusulinids. University of Kansas Paleontological Contributions, Protozoa, art. 5:1225.Google Scholar
Thompson, M. L. and Foster, C. L. 1937. Middle Permian fusulinids from Szechuan, China. Journal of Paleontology, 11:126144.Google Scholar
Ueno, K. 2006. The Permian antitropical fusulinoidean genus Monodiexodina; distribution, taxonomy, paleobiogeography and paleoecology. Journal of Asian Earth Sciences, 26:380404.Google Scholar
Ueno, K., Wang, Y., and Wang, X. 2003. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changing-Menglian Belt, west Yunnan, southwest China; an overview. Island Arc, 12:145161.Google Scholar
Vachard, D., Munnecke, A., and Servais, T. 2004. New SEM observations of keriothecal walls: implications for the evolution of Fusulinida. Journal of Foraminiferal Research, 34:232242.Google Scholar
Van Ginkel, A. C. 2010. Systematics of the Eostaffellidae. Special Publication of Cushman Foundation for Foraminiferal Research, 42, 130 p.Google Scholar
Vilesov, A. P. 2000. Fusulinid-based zonation of the Melekhovian Horizon (Upper Carboniferous, Gzhelian Stage) in the Perm' Region. Stratigraphy, Geological Correlations, 8:447460.Google Scholar
Wilde, G. L. 2006. Pennsylvanian–Permian Fusulinaceans of the Big Hatchet Mountains, New Mexico. New Mexico Museum of Natural History and Science, Bulletin 38, 329 p.Google Scholar
Xia, G., Ding, Y., Ding, H., Zhang, W., Zhang, Y., Zhao, Z., and Yang, F. 1996. On the Carboniferous–Permian boundary stratotype in China. Geological Publishing House, Beijing, 200 p. (In Chinese) Google Scholar
Xiao, W., Wang, H., Zhang, L., and Dong, W.-L. 1986. Early Permian stratigraphy and faunas in Southern Guizhou. The People's Publishing House of Guizhou, Guizhou, China, 364 p. (In Chinese) Google Scholar
Zolotova, V. P., Shcherbakova, M. V., Ekhlakov, Y. A., Alksne, A. E., Polozova, M. V., Konovalova, M. B., and Kosheleva, V. F. 1977. Fusulinids of the Gzhelian–Asselian Boundary Beds of the Urals, Preurals, and Timan. Voprosy Mikropaleontologii, 20:93120. (In Russian) Google Scholar
Supplementary material: PDF

Davydov et al. supplementary material

Davydov et al. supplementary material 1
Download Davydov et al. supplementary material(PDF)
PDF 66.3 KB
Supplementary material: File

Davydov et al. supplementary material

Davydov et al. supplementary material 2
Download Davydov et al. supplementary material(File)
File 24.9 KB