Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T03:38:45.523Z Has data issue: false hasContentIssue false

Larvae and relationships of the Calymenina (Trilobita)

Published online by Cambridge University Press:  14 July 2015

B. D. E. Chatterton
Affiliation:
Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada
D. J. Siveter
Affiliation:
The University Museum, Parks Road, Oxford OX1 3PW, England
G. D. Edgecombe
Affiliation:
The American Museum of Natural History, Central Park West at 79th Street, New York 10024-5192
A. S. Hunt
Affiliation:
Department of Geology, University of Vermont, Burlington 05405-0122

Abstract

Up to four discrete protaspid larval stages are described for calymenid trilobites of Ordovician to Devonian age. The earliest growth stages are nonadult-like planktonic protaspides; later protaspides are adult-like and benthonic. In contrast, the related homalonotid trilobites apparently lack planktonic protaspides, but have up to two large benthonic protaspid stages that are similar in form to calymenid benthonic protaspides. These differences in life history patterns between these families are reflected in their paleobiogeographic distributions. Calymenids werre widely dispersed from Ordovician to Devonian times, both being common in warm, low latitude provinces (particularly from the Late Ordovician onwards) and well represented in cooler, higher latitude regions. The paleogeographic distribution of the homalonotids during the Ordovician (Arenig to the Ashgill) was concentrated in high paleolatitudes, with only a few forms occurring at low paleolatitudes (often in deeper, cooler environments?). Both families survived the Ordovician–Silurian mass extinction, with the calymenids again being widely dispersed but the homalonotids being best represented in the cool-water Malvinokaffric Province and in other regions where they are largely restricted to clastic facies.

So few complete growth series of calymenine trilobites are known that it is unlikely that the ontogenies of taxa that form parts of ancestor–descendant clades can be identified. However, some evidence for heterochronic, particularly paedomorphic (neotenic), evolution is suggested for larval stages of members of both the Calymenidae and the Homalonotidae. Such possible neotenic evolution leading to very large planktonic larval stages of calymenid trilobites during the Devonian could have enhanced dispersal during a period of widespread warm and equable climates. Comparisons of homalonotid protaspides with equivalent stages of calymenids support the close relationship of these families within the Calymenina. A data matrix based upon characters of protaspides of two calymenine trilobites (Flexicalymene Shirley, 1936, and Brongniartella Reed, 1918) and eight other trilobites, belonging to the Phacopina (Calyptaulax), Cheirurina (Physemataspis and Hyrokybe), Proetida (Scharyia), Lichida (Acanthopyge), Odontopleurida (Diacanthaspis), Corynexochida (Bathyuriscus), and Ptychopariida (Crassifimbra) was subjected to cladistic analysis using the parsimony program “Hennig 86.” The shortest length cladogram produced is consistent with the inclusion of the Homalonotidae in the Calymenina, and inclusion of the Calymenina in the order Phacopida. “Cheirurina” is the paraphyletic “stem group” of Phacopina. The hypothesis that Lonchocephalidae is most closely related to part of post-Cambrian Phacopida is poorly supported by protaspid characters.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1852. Systěme Silurien du centre de la Bohěme. lère partie. Recherches paléontologiques, Volume 1. Crustacés Trilobites. Prague and Paris, 935 p.Google Scholar
Beecher, C. E. 1895. The larval stages of trilobites. The American Geologist, 16:166197.Google Scholar
Beecher, C. E. 1897. Outline of a natural classification of the trilobites. American Journal of Science, 3:89106, 181-207.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Clarkson, E. N. K. 1988. Extinction and the fossil record of the arthropods. In Larwood, G. P. (ed.), Extinction and survival in the fossil record. Systematics Association, Special Volume 34:171209.Google Scholar
Brongniart, A. 1822. In Brongniart, A. and Desmarest, A. G., Histoire naturelle des Crustacés fossiles, sous les rapports zoologique et géologique. Savoir: Les Trilobites par A. Brongniart. Les Crustacés proprement dits par A. G. Desmarest, Paris, 154 p.Google Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales. Palaeontographica A, 137, 108 p.Google Scholar
Chatterton, B. D. E. 1980. Ontogenetic studies of Middle Ordovician trilobites from the Esbataottine Formation, Mackenzie Mountains, Canada. Palaeontographica A, 171, 74 p.Google Scholar
Chatterton, B. D. E., and Campbell, K. S. W. 1980. Silurian trilobites from near Canberra and some related forms from the Yass Basin. Palaeontographica A, 167:77119.Google Scholar
Chatterton, B. D. E., and Perry, D. G. 1983. Silicified Silurian trilobites from the Mackenzie Mountains. Palaeontographica Canadiana, 1, 127 p.Google Scholar
Chatterton, B. D. E., and Perry, D. G. 1984. Silurian cheirurid trilobites from the Mackenzie Mountains, Northwestern Canada. Palaeontographica A, 184, 78 p.Google Scholar
Chatterton, B. D. E., and Speyer, S. E. 1987. Trilobite larval ecology and the Ordovician-Silurian (Ashgill) extinction. Geological Society of America, Abstracts with Programs, 19(7):618.Google Scholar
Chatterton, B. D. E., and Speyer, S. E. 1989. Larval ecology, life history strategies, and patterns of extinction and survivorship among Ordovician trilobites. Paleobiology, 15:118132.Google Scholar
Conrad, T. A. 1841. Fifth annual report on the paleontology of the State of New York. New York Geological Survey, Annual Report 5:2557.Google Scholar
Cooper, G. A. 1935. Young stages of the Devonian trilobite Dipleura dekayi Green. Journal of Paleontology, 9:35.Google Scholar
de Quieroz, K. 1985. The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Systematic Zoology, 34:280299.Google Scholar
Edgecombe, G. D., Speyer, S. E., and Chatterton, B. D. E. 1988. Protaspid larvae and phylogenetics of encrinurid trilobites. Journal of Paleontology, 62:779799.Google Scholar
Evitt, W. R. 1961. Early ontogeny in the trilobite family Asaphidae. Journal of Paleontology, 35:986995.Google Scholar
Evitt, W. R., and Whittington, H. B. 1953. The exoskeleton of Flexicalymene (Trilobita). Journal of Paleontology, 27:4955.Google Scholar
Fortey, R. A. 1983. Cambrian-Ordovician trilobites from the boundary beds in western Newfoundland and their phylogenetic significance. Special Papers in Palaeontology, 30:179211.Google Scholar
Fortey, R. A., and Chatterton, B. D. E. 1988. Classification of the trilobite suborder Asaphina. Palaeontology, 31:165222.Google Scholar
Fortey, R. A., and Morris, S. M. 1978. Discovery of a nauplius-like trilobite larvae. Palaeontology, 21:823833.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. The Belknap Press of Harvard University Press, Cambridge, Massachusetts, 510 p.Google Scholar
Harrington, H. J., Henningsmoen, G., Howell, B. F., Jaanusson, V., Lochman-Balk, C., Moore, R. C., Poulsen, C., Rasetti, F., Richter, E., Richter, R., Schmidt, H., Sdzuy, K., Struve, W., St⊘rmer, L., Stubblefield, C. J., Tripp, R. P., Weller, J. M., and Whittington, H. B. 1959. Treatise on Invertebrate Paleontology. Part. O. Arthropoda 1. Geological Society of America and University of Kansas Press, Lawrence, 560 p.Google Scholar
Holloway, D. J. 1980. Middle Silurian trilobites from Arkansas and Oklahoma, U.S.A. Part 1. 20 plates. Palaeontographica Abt A Band 170.Google Scholar
Hu, C.-H. 1964. The ontogeny and dimorphism of Welleraspis lata Howell (Trilobita). Journal of Paleontology, 38:9597.Google Scholar
Hu, C.-H. 1968. Notes on the ontogeny and sexual dimorphism of Upper Cambrian trilobites of the Welleraspis Faunule from Pennsylvania. The Journal of Nanyang University, II; 1968.Google Scholar
Hu, C.-H. 1969. Ontogeny and sexual dimorphism of three Upper Cambrian trilobites. Nanjing University Journal, 3:438461.Google Scholar
Hu, C.-H. 1971. Ontogeny and sexual dimorphism of lower Paleozoic Trilobita. Palaeontographica Americana, 7(44), 155 p.Google Scholar
Hu, C.-H., and Tan, L.-L. 1971. Ontogenies of three Upper Cambrian trilobites from northern Black Hills, South Dakota. Transactions and Proceedings of the Palaentological Society of Japan, New Series, 82:6172.Google Scholar
Hunt, A. S. 1967. Growth, variation and instar development in an agnostid trilobite. Journal of Paleontology, 41:203208.Google Scholar
Jaanusson, V. 1975. Evolutionary processes leading to the trilobite Suborder Phacopina. Fossils and Strata, 4:209218.Google Scholar
Kopaska-Merkel, D. C. 1987. Ontogeny and evolution of an Ordovician trilobite. Society of Economic Paleontologists and Mineralogists, Annual Midyear Meeting, Abstracts, 4:4344.Google Scholar
Kopaska-Merkel, D. C. 1988. Trace-fossil frequency modes and arthropod growth. Northeastern Geology, 10:300306.Google Scholar
Lu, Y.-H. 1963. Silurian arthropod fossils. In Yi, Y. (ed.), Fossil Handbook, Qinglin Mountain Region. Institute of Geological Sciences, Ministry of Geology, China Industry Publishing House, Beijing, 53 p.Google Scholar
Lu, Y.-H., and Wu, H.-H. 1982. The ontogeny of Platycoryphe sinensis and its bearing on the phylogeny of the Homalonotidae. Acta Palaeontologica Sinica, 21:3756.Google Scholar
Milne Edwards, H. 1840. Histoire naturelle des Crustacés, comprenant l'anatomie, la physiologie et la classification de ces animaux, 3:638 p. Paris.Google Scholar
Over, D. J., and Chatterton, B. D. E. 1987. Silurian conodonts from the southern Mackenzie Mountains, Northwest Territories, Canada. Geologica et Palaeontologica, 21:149.Google Scholar
Palmer, A. R. 1957. Ontogenetic development of two olenellid trilobites. Journal of Paleontology, 31:105128.Google Scholar
Palmer, A. R. 1958. Morphology and ontogeny of a Lower Cambrian ptychoparioid trilobite from Nevada. Journal of Paleontology, 32:154170.Google Scholar
Palmer, A. R. 1962. Comparative ontogeny of some opisthoparian, gonatoparian, and proparian Upper Cambrian trilobites. Journal of Paleontology, 36:8796.Google Scholar
Przibram, H. 1931. Connecting laws of animal morphology. Four lectures held at the University of London, March, 1929. London University Press, London, 62 p.Google Scholar
Rasetti, F. 1954. Phylogeny of the Cambrian trilobite family Catillicephalidae and the ontogeny of Welleraspis . Journal of Paleontology, 28:599612.Google Scholar
Raw, F. 1925. The development of Leptoplastus salteri (Calloway) and of other trilobites. Quarterly Journal of the Geological Society of London, 81:223324.Google Scholar
Reed, F. R. C. 1918. Notes on the Genus Homalonotus . Geological Magazine, 5:263276, 314-327.Google Scholar
Ross, R. J. Jr. 1967. Calymenid and other Ordovician trilobites from Kentucky and Ohio. U. S. Geological Survey, Professional Paper 583-B:118.Google Scholar
Ruedemann, R. 1912. The Lower Siluric shales of the Mohawk Valley. New York State Museum Bulletin 162, 151 p.Google Scholar
Ruedemann, R. 1926. The Utica and Lorraine Formations of New York. Pt. 2. Systematic Paleontology. New York State Museum Bulletin 272, 227 p.Google Scholar
Schöning, H. 1986. Larval stadien von Trilobiten aus einem Geschiebe des grünlich-grauen Graptolithengesteins’ (Mittleres Silur). Osnabrücker naturwissenschaftliche Mitteilungen, 12:6185.Google Scholar
Schrank, E. 1970. Calymeniden (Trilobita) aus Silurischen Geschieben. Deutsche Gesselschaft für Geologische Wissenschaften A, Geologie und Paläontologie, 15:109146.Google Scholar
Sheldon, P. R. 1988. Trilobite size-frequency distributions, recognition of instars, and phyletic size changes. Lethaia, 21:293306.Google Scholar
Shirley, J. 1936. Some British trilobites of the family Calymenidae. Quarterly Journal of the Geological Society of London, 92:384422.Google Scholar
Siveter, D. J. 1977. The Middle Ordovician of the Oslo Region, Norway, 27. Trilobites of the family Calymenidae. Norsk Geologisk Tidsskrift, 56:335396.Google Scholar
Siveter, D. J. 1979. Metacalymene Kegel, 1927, a calymenid trilobite from the Kopanina Formation (Silurian) of Bohemia. Journal of Paleontology, 53:367379.Google Scholar
Siveter, D. J. 1983. Calymene lawsoni and allied species from the Silurian of Britain and their stratigraphic significance. Special Papers in Palaeontology, 30:6988.Google Scholar
Speyer, S. E., and Chatterton, B. D. E. 1987. Trilobite larvae and larval ecology. Geological Society of America, Abstracts with Programs, 19(7):853.Google Scholar
Speyer, S. E., and Chatterton, B. D. E. 1989. Trilobite larvae and larval ecology. Historical Biology, 3:2760.Google Scholar
St⊘rmer, L. 1942. Studies on trilobite morphology. Pt. II. The larval development, the segmentation and the sutures, and their bearing on trilobite classification. Norsk Geologisk tiddskrift, 21:49164.Google Scholar
Stubblefield, C. J. 1960. Evolution in trilobites. Quarterly Journal of the Geological Society of London, 115:145162.Google Scholar
Swinnerton, H. H. 1915. Suggestions for a revised classification of trilobites. Geological Magazine, 2:487496, 538-545.Google Scholar
Thomas, A. T. 1977. Classification and phylogeny of homalonotid trilobites. Palaeontology, 20:159178.Google Scholar
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews, 25:145.Google Scholar
Tomczykowa, E. 1957. Trilobites from the Wenlock and lower Ludlow graptolitic shales of the Świty Krzyź Mountains. Instytut Geologiczny Biuletyn, 122:83143.Google Scholar
Tripp, R. P., and Evitt, W. R. 1986. Silicified trilobites of the family Asaphidae from the Middle Ordovician of Virginia. Palaeontology, 29:705724.Google Scholar
Warburg, E. 1925. The trilobites of the Leptaena Limestone in Darlarne, with a discussion of the zoological position and the classification of the Trilobita. Bulletin of the Geological Institute of Uppsala, 17. 445 p.Google Scholar
Whittington, H. B. 1941. Silicified Trenton trilobites. Journal of Paleontology, 15:492522.Google Scholar
Whittington, H. B. 1954. Status of invertebrate paleontology, 1953 VI. Arthropoda: Trilobita. Bulletin of the Museum of Comparative Zoology, Harvard University, 112:193200.Google Scholar
Whittington, H. B. 1956. Silicified Middle Ordovician trilobites: the Odontopleuridae. Bulletin of the Museum of Comparative Zoology, Harvard University, 114:155288.Google Scholar
Whittington, H. B. 1957a. The ontogeny of trilobites. Biological Reviews, 32:421469.Google Scholar
Whittington, H. B. 1957b. Ontogeny of Elliptocephala, Paradoxides, Sao, Blainia and Triarthrus (Trilobita). Journal of Paleontology, 31:934946.Google Scholar
Whittington, H. B. 1959a. Ontogeny of Trilobita p. 01270144. In Moore, R. C., (ed.), Treatise on Invertebrate Paleontology. Pt. O. Arthropoda 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Whittington, H. B. 1959b. Silicified Middle Ordovician trilobites: Remopleurididae, Trinucleidae, Raphiophoridae, Endymionidae. Bulletin of the Museum of Comparative Zoology, Harvard University, 121:369496.Google Scholar
Whittington, H. B. 1965. Platycoryphe, an Ordovician homalonotid trilobite. Journal of Paleontology, 39:487491.Google Scholar