Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:08:59.120Z Has data issue: false hasContentIssue false

Kailidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili biota of Guizhou Province, China

Published online by Cambridge University Press:  20 May 2016

Yuanlong Zhao
Affiliation:
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China, ,
Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, 37996,
Ronald L. Parsley
Affiliation:
Department of Earth and Environmental Sciences, Tulane University, New Orleans, Louisiana, 70118,
Jin Peng
Affiliation:
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China, ,

Abstract

A new genus and species of edrioasteroid grade echinoderm, Kailidiscus chinensis, is described from the Kaili Biota of the basal lower Middle Cambrian Kaili Formation from Guizhou Province, China. This echinoderm has a strong resemblance to isorophid edrioasteroids, bearing a well-developed peripheral rim, long curved ambulacra, and slightly imbricate interambulacral plating at maturity. However, the presence of pore-bearing, double biserial floor plates, tiered cover plates, lack of radially positioned oral frame plates, and unincorporated hydropore/gonopore are unknown in isorophids. Many of these features bear strong resemblance to eocrinoids and helicoplacoids, attesting to the plesiomorphic nature of this taxon. Despite the obvious anatomical differences, specimens of this species preserve a complete ontogeny that resembles that of isorophids. Juveniles show a discoidal theca with straight ambulacra that transitions to an inflated theca with strongly curved ambulacra with maturity.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassler, R. S. 1935. The classification of the Edrioasteroidea. Smithsonian Miscellaneous Collections, 93:111.Google Scholar
Bassler, R. S. 1936. New species of American Edrioasteroidea. Smithsonian Miscellaneous Collections, 95:133.Google Scholar
Bather, F. A. 1914. Edrioasters in the Trenton Limestone (parts 1 and 2). Geological Magazine, Dec. 6, 1:115125, 162–171.CrossRefGoogle Scholar
Bell, B. M. 1976a. A Study of North American Edrioasteroidea. New York State Museum Memoir 21, 476 pp.Google Scholar
Bell, B. M. 1976b. Phylogenetic implications of ontogenetic development in the class Edrioasteroidea (Echinodermata). Journal of Paleontology, 50:10011019.Google Scholar
Bell, B. M. 1979. Edrioasteroids (Echinodermata), p. E1E7. In Pojetta, J. (ed.), Contributions to the Ordovician Paleontology of Kentucky and Nearby States. U.S. Geological Survey Professional Paper 1066E.Google Scholar
Bell, B. M. 1980. Edrioasteroidea and Edrioblastoidea, p. 158174. In Broadhead, T. W. and Waters, J. A. (eds.) Echinoderms, notes for a Short Course. University of Tennessee, Department of Geological Sciences Studies in Geology 3. Knoxville.Google Scholar
Bell, B. M. and Sprinkle, J. 1978. Totiglobus, an unusual new edrioasteroid from the Middle Cambrian of Nevada. Journal of Paleontology, 52:243266.Google Scholar
Billings, E. 1858. On the Asteriadae of the Lower Silurian rocks of Canada. Geological Survey of Canada, figures and description of Canadian organic remains, 3:7585.Google Scholar
Cabibel, J. H. Termier, and Termier, G. 1958. Les échinoderms mésocambriens de la Montagne Noire. Annales de Paléontologie, 44:281294.Google Scholar
Dornbos, S. Q. 2006. Evolutionary palaeoecology of early epifaunal echinoderms: Response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237:225239CrossRefGoogle Scholar
Fay, R. O. 1962. Edrioblastoidea, a new class of Echinodermata. Journal of Paleontology, 36:201205.Google Scholar
Guensburg, T. E. and Sprinkle, J. 1994. Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early and Middle Ordovician of western Utah. Fieldiana (Geology), 29:143.Google Scholar
Kesling, R. V. 1960. Hydropores in edrioasteroids. University of Michigan contributions to the Museum of Paleontology, 15:139192.Google Scholar
Lin, J-P., Ausich, W. I., Zhao, Y-L., and Peng, J. 2008. Taphonomy, paleoecological implications, and colouration of Cambrian gogiid echinoderms from Guizhou Province, China. Geological Magazine, 145:1736.CrossRefGoogle Scholar
Mintz, L. W. 1970. The Edrioblastoidea: re-evaluation based on a new specimen of Astrocystites from the Middle Ordovician of Ontario. Journal of Paleontology, 44:872880.Google Scholar
Parsley, R. L. and Prokop, R. 2004. Functional morphology and paleoecology of some sessile Middle Cambrian echinoderms from the Barrandian region of Bohemia. Bulletin of Geosciences, 79:147156.Google Scholar
Parsley, R. L. 2006. Long-stemmed eocrinoids in the basal Middle Cambrian Kaili Biota, Taijaing County, Guizhou Province, China. Journal of Paleontology, 80:10581071.CrossRefGoogle Scholar
Pompeckj, J. F. 1896. Die Fauna des Cambrium von Tejrovic und Skrej in Bohemen. Jb K.-K. Geol. Reichsanst. Wein., 45:495614.Google Scholar
Regnell, G. 1966. Edrioasteroids, p. U136U173. In Treatise on Invertebrate Paleontology, Part U (Echinodermata 3). Moore, R. C., (ed.). Geological Society of America and University of Kansas, New York and Lawrence.Google Scholar
Rudemann, R. 1933. Camptostroma, A Lower Cambrian floating hydrozoan. U. S. National Museum Proceedings, Article, 82:18.CrossRefGoogle Scholar
Smith, A. B. 1983. British Carboniferous edrioasteroids (Echinodermata). Bulletin of the British Museum of Natural History (Geology), 37:113138.Google Scholar
Smith, A. B. 1984. Classification of the Echinodermata. Palaeontology, 27:431459.Google Scholar
Smith, A. B. 1985. Cambrian Eleutherozoan Echinoderms and the early diversification of edrioasteroids. Palaeontology, 28:715756.Google Scholar
Smith, A. B. 1988a. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence, p. 85101. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolution. Clarendon Press, Oxford.Google Scholar
Smith, A. B. 1988b. Patterns of diversification and extinction in Early Palaeozoic echinoderms. Palaeontology, 31:799828.Google Scholar
Smith, A. B. 1990. Evolutionary diversification of echinoderms during the Early Palaeozoic, p. 256286. In Taylor, P. D. and Larwood, G. P. (eds.), Systematics Association Special Volume 42. Claendon Press, Oxford.Google Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, 283 p.Google Scholar
Sprinkle, J. 1985. New Edrioasteroids from the Middle Cambrian of Western Utah. University of Kansas Paleontological Contributions, no. 116.Google Scholar
Sumrall, C. D. 1993. Thecal designs in isorophinid edrioasteroids. Lethaia, 26:289302.CrossRefGoogle Scholar
Sumrall, C. D. 1996. Late Paleozoic edrioasteroids from the North American mid-continent. Journal of Paleontology, 70:969985.CrossRefGoogle Scholar
Sumrall, C. D. 2001. Paleoecology and taphonomy of two new edrioasteroids from a Mississippian hardground in Kentucky. Journal of Paleontology, 75:136146.CrossRefGoogle Scholar
Sumrall, C. D. 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms., p. 269276. In Harris, L. G., Böttger, S. A., Walker, C. W., and Lesser., M. P. (eds.) Echinoderms: Durham, CRC Press, London.Google Scholar
Sumrall, C. D. and Deline, B. 2009. A new species of the dualmouthed paracrinoid Bistomiacystis and a redescription of the edrioasteroid Edrioaster priscus from the Middle Ordovician Curdsville Member of the Lexington Limestone. Journal of Paleontology, 83:135139.CrossRefGoogle Scholar
Sumrall, C. D. and Gahn, F. J. 2006. Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada. Canadian Journal of Earth Science, 43:497507.CrossRefGoogle Scholar
Sumrall, C. D. and Wray, G. A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33:149163.CrossRefGoogle Scholar
Sumrall, C. D. and Zamora, S. In press. Ordovician edrioasteroids from Morocco: faunal exchanges across the Rheic Ocean. Journal of Systematic Palaeontology.Google Scholar
Sumrall, C. D., Sprinkle, J., and Bonem, R. 2006. An edrioasteroid dominated echinoderm assemblage from a Lower Pennsylvanian marine conglomerate in Oklahoma. Journal of Paleontology, 80:229244.CrossRefGoogle Scholar
Zhao, Y-L., Yuan, J-L., Huang, Y-Z., Chen, X-Y., and Zhou, Z. 1996. Kaili Lagerstätte – a new Middle Cambrian Burgess shale-type lagerstätten. Geology of Guizhou, 13:105114.Google Scholar
Zhao, Y-L., Zhu, M-Y., Babcock, L. E., Yuan, J-L., Parsley, R. L., Peng, J., Yang, X-L., and Wang, Y. 2005. Kaili Biota: a taphonomic window on diversification of metazoans from the Basal Middle Cambrian: Guizhou, China. Acta Geologica Sinica, 79:6:751765.Google Scholar
Zhao, Y-L., Parsley, R. L., and Peng, J. 2007. Early Cambrian eocrinoids from Guizhou Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:317327.CrossRefGoogle Scholar
Zhao, Y-L., Parsley, R. L., and Peng, J. 2008. Basal Middle Cambrian short stalked eocrinoids from the Kaili Biota, Taijiang County, Guizhou Province, China. Journal of Paleontology, 82:2:369376.CrossRefGoogle Scholar
Zhu, M-Y., Erdtmann, B. D., and Zhao, Y-L. 1999. Taphonomy and paleoecology of the early Middle Cambrian Kaili Lagerstätte in Guizhou. China Acta Paleontologica Sinica, 38 (sup):2857.Google Scholar