Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T19:23:33.983Z Has data issue: false hasContentIssue false

Intraspecific variability, biostratigraphy and paleobiological significance of the Southern Gondwana ammonoid genus Lytohoplites Spath

Published online by Cambridge University Press:  12 March 2019

Verónica V. Vennari
Affiliation:
Grupo vinculado al Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Museo de Historia Natural de San Rafael, Parque Mariano Moreno s/n, M5602DPH, San Rafael, Mendoza, Argentina
Beatriz Aguirre-Urreta
Affiliation:
Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Intendente Güiraldes 2160, C1428EGA, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, Argentina

Abstract

Lytohoplites Spath, 1925 is a late Tithonian–?early Berriasian ammonoid genus with a southern perigondwanean distribution. Two Lytohoplites species, L. burckhardti (Mayer-Eymar in Burckhardt, 1900) (type species) and L. vetustoides (Burckhardt, 1903), were originally described from carbonate successions of the Vaca Muerta Formation, Neuquén Basin, Argentina. Nevertheless, the holotype of L. burckhardti consisted of a single incomplete specimen that is currently missing. This situation compelled the search for new Lytohoplites specimens in Argentina and the selection of a neotype for L. burckardti. New Lytohoplites representatives were obtained through bed-by-bed collections performed at five localities in the Neuquén Basin. In addition to the taxonomic revision of the Lytohoplites species occurring in the basin, a paleobiological approach was preferred to conduct a paleontological analysis of L. burckhardti, including a description of its ontogeny, probable sexual dimorphism, and spectrum of intraspecific variability. Results of the qualitative and quantitative analyses supported the homogeneity of L. burckhardti as a taxonomic unit, thus implying that L. vetustoides should be considered its synonym. Lytohoplites in the Neuquén Basin is restricted to beds assigned to the Andean Substeueroceras koeneni Assemblage Zone (upper Tithonian–lower Berriasian), and not to the Andean Corongoceras alternans Assemblage Zone (upper Tithonian). Furthermore, the paleobiogeographic distribution of Lytohoplites around southern Gondwana and the herein reported occurrence of L. subcylindricus Collignon, 1962, otherwise only known from Madagascar, lend support to the existence of a functional trans-Gondawana seaway at least since the upper Tithonian.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre-Urreta, M.B., 1998, The ammonites Karakaschiceras and Neohoploceras (Valanginian Neocomitidae) from the Neuquen basin, west-central Argentina: Journal of Paleontology, v. 72, p. 3959.Google Scholar
Arkell, W.J., Bernhard, K., and Wright, C.W., 1957, Mesozoic ammonoidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Pt. L. Mollusca 4. Cephalopoda, Ammonoidea: Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. L80L441.Google Scholar
Armella, C., Cabaleri, N., and Leanza, H.A., 2007, Tidally dominated, rimmed-shelf facies of the Picún Leufú Formation (Jurassic/Cretaceous boundary) in southwest Gondwana, Neuquén Basin, Argentina: Cretaceous Research, v. 28, p. 961979.Google Scholar
Ballent, S.C., 2009, Afinidades gondwánicas de los ostrácodos (Crustacea) marinos del Jurásico y Cretácico Inferior de la Cuenca Neuquina: Revista de la Asociación Geológica Argentina, v. 65, p. 311321.Google Scholar
Bardhan, S., Shome, S., and Roy, P., 2007. Biogeography of Kutch ammonites during the latest Jurassic (Tithonian) and a global paleobiogeographic overview, in Landman, N.H., Davis, R.A., and Mapes, R.H., eds., Cephalopods Present and Past, New Insights and Fresh Perspectives: Dordrecht, Springer, p. 375395.Google Scholar
Behrendsen, O., 1891–1892, Zur Geologie der Ostbhanges der argentinischen Cordillere: Deutsche Geologische Gesellschaft, v. 43 (1891), p. 369420; v. 44 (1892), p. 1–42.Google Scholar
Bersac, S., and Bert, D., 2012, Ontogenesis, variability and evolution of the Lower Greensand Deshayesitidae (Ammonoidea, Lower Cretaceous, Southern England): reinterpretation of literature data; taxonomic and biostratigraphic implications: Annales du Muséum d'Histoire Naturelle de Nice, v. 27, p.197270.Google Scholar
Bert, D., 2014, Factors of intraspecific variability in ammonites, the example of Gassendiceras alpinum (d'Orbigny, 1850) (Hemihoplitidae, Upper Barremian): Annales de Paléontologie, v. 100, p. 217236.Google Scholar
Besairie, H., 1936, Recherches géologiques à Madagascar. 1. La géologie du Nord-Ouest: Mémoires de l'Academie Malgache, v. 21, 259 p.Google Scholar
Biró-Bagóczky, L., 1964, Estudio sobre el límite entre el Tithoniano y el Neocomiano en la Formación Lo Valdés, Provincia de Santiago, principalmente en base a ammonoideos [PhD Thesis]: Santiago, Universidad de Chile, Escuela de Geología, 108 p.Google Scholar
Biró-Bagóczky, L., 1984, New contributions to the paleontology and stratigraphy of some Tithonian–Neocomian outcrops in the Chilean part of the Andean Range between 33°45′ and 35° Lat. S.: I.G.C.P. Project 171: Circum-Pacific Jurassic Report 2, Special Paper 3, p. 1–17.Google Scholar
Blanchet, F., 1922, Sur un groupe d'ammonites éocrétacées dérivées des Cosmoceras: Compte Rendu Sommaire des Séances de la Société Géologique de France, v. 13, p. 158160.Google Scholar
Bralower, T.J., Monechi, S., and Thierstein, H.R., 1989, Calcareous nannofossil zonation of the Jurassic–Cretaceous boundary interval and correlation with the geomagnetic polarity timescale: Marine Micropaleontology, v. 14, p. 153235.Google Scholar
Burckhardt, C., 1900, Coupe géologique de la Cordillère entre Las Lajas et Curacautin: Anales del Museo de La Plata, Sección geológica y mineralógica, v. 3, p. 1100.Google Scholar
Burckhardt, C., 1903, Beitrage zur Kenntniss der Jura und Kreide formation der Cordillere: Palaeontographica A, v. 50, p. 1144.Google Scholar
Casellato, C.E., 2010, Calcareous nannofossil biostratigraphy of Upper Callovian–Lower Berriasian successions from the Southern Alps, North Italy: Rivista Italiana di Paleontologia e Stratigrafia, v. 116, p. 357404.Google Scholar
Cataldo, C.S., 2017, New records of marine gastropods from the Lower Cretaceous of west-central Argentina: Ameghiniana, v. 54, p. 405440.Google Scholar
Cataldo, C.S., and Lazo, D.G., 2012, Redescription of Pleurotomaria gerthi Weaver, 1931 (Gastropoda, Vetigastropoda), from the Early Cretaceous of Argentina: new data on its age, associated palaeoenvironments and palaeobiogeographic affinities: Ameghiniana, v. 49, p. 7595.Google Scholar
Cecca, F., 1999, Palaeobiogeography of Tethyan ammonites during the Tithonian (latest Jurassic): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 147, p. 137.Google Scholar
Cecca, F., 2002, Palaeobiogeography of Marine Fossil Invertebrates: Concepts and Methods: London, Taylor and Francis, 271 p.Google Scholar
Cecioni, G., and Charrier, R., 1974, Relaciones entre la Cuenca Patagónica, la Cuenca Andina y el Canal de Mozambique: Ameghiniana v.11, p. 138.Google Scholar
Challinor, A.B., and Hikuroa, D.C.H., 2007, New Middle and Upper Jurassic belemnite assemblages from West Antarctica (Latady Group, Ellsworth Land): taxonomy and paleobiogeography: Palaeontologia Electronica, 10.1.6A, 29.Google Scholar
Collignon, M., 1960, Atlas des Fossiles Caractéristiques de Madagascar. 6. (Tithonique). République Malgache: Tananarive, Ministère des Mines et de l'Energie, Service géologique, 179 p.Google Scholar
Collignon, M., 1961, A propos du Tithonique à Madagascar: Compte Rendus Academie des Sciences, v. 252, p. 4549.Google Scholar
Collignon, M., 1962, Atlas des Fossiles Caractéristiques de Madagascar. 8. (Berriasien, Valanginien, Hauterivien, Barremien). République Malgache: Tananarive, Ministère des Mines et de l'Energie, Service géologique, 96 p.Google Scholar
Courville, P., and Crônier, C., 2003, Les hétérochronies du développement: ou outil pour l'étude de la variabilité et des relations phylétiques? Exemple de Nigericeras, Ammonitina du Crétacé supérieur africain: Comptes Rendus Paleovol, v. 2, p. 535546.Google Scholar
Cuvier, G., 1797, Note sur une nouvelle espèce de guêpe cartonnière: Magasin Encyclopédique, ou Journal des Sciences, des Lettres et des Arts v. 17, p. 146148.Google Scholar
Damborenea, S.E., Echevarría, J., and Ros, S., 2013, Southern Hemisphere paleobiogeography of Triassic–Jurassic marine bivalves: Springer Briefs in Earth System Sciences, v. 8, 139 p.Google Scholar
De Baets, K., Klug, C., and Monnet, C., 2013, Intraspecific variability through ontogeny in early ammonoids: Paleobiology, v. 39, p. 7594.Google Scholar
De Baets, K., Bert, D., Hoffmann, R., Monnet, C., Yacobucci, M., and Klug, C., 2015, Ammonoid intraspecific variability, in Klug, C., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: from Anatomy to Ecology: Topics in Geobiology 43, p. 359426.Google Scholar
Dommergues, J.L., David, B., and Marchand, D., 1986, Les relations ontogenèse-phylogenèse: applications paléontologiques: Geobios, v. 19, p. 335356.Google Scholar
Enay, R., 1972, Paléobiogéographie des Ammonites du Jurassique terminal (Tithonique/Volgien/Portlandien) et mobilité continentale: Geobios, v. 5, p. 355407.Google Scholar
Enay, R., 2009, Les faunes d' ammonites de l' Oxfordien au Tithonien et la biostratigraphie des Spiti-Shales (Callovien supérieur–Tithonien) de Thakkhola, Népal Central: Documents des Laboratoires de Géologie de Lyon, v. 66, p. 1351.Google Scholar
Enay, R., Barale, G., Jacay, J., and Jaillard, E., 1996, Upper Tithonian ammonites and floras from the Chicama Basin, northern Peruvian Andes, in Riccardi, A.C., ed., Advances in Jurassic Research: GeoResearch Forum, v. 1–2, p. 221234.Google Scholar
Fatmi, A.N., 1977, Neocomian ammonites from northern areas of Pakistan: Bulletin of the British Museum (Natural History) Geology, v. 28, p. 255296.Google Scholar
Fernández, M.S., 1997, On the paleogeographic distribution of Callovian and Late Jurassic ichthyosaurs: Journal of Vertebrate Paleontology, v. 17, p. 752754.Google Scholar
Fernández, M.S., Vennari, V.V., Herrera, Y., Campos, L., Talevi, M., and de la Fuente, M., 2018, New marine reptile assemblage from the Jurassic-Cretaceous boundary beds of the High Andes, Argentina: Tenth International Congress on the Jurassic System, San Luis Potosí, México, Actas, p. 5255.Google Scholar
Feruglio, E., 1936, Paleontographica Patagónica: Memoria del Instituto Geológico de Padova, v. 11, p. 1384.Google Scholar
Fürsich, F.T., Heinze, M., and Jaitly, A.K., 2000, Contributions to the Jurassic of Kachchh, Western India. VIII. The bivalve fauna. Part IV. Subclass Heterodonta: Beringeria, v. 27, p. 63146.Google Scholar
Gasparini, Z., 1992, Marine reptiles of the Circum-Pacific region, in Westermann, G.E.G., ed., The Jurassic of the Circum-Pacific: World and Regional Geology 3: New York, Cambridge University Press, p. 361364.Google Scholar
Gerth, H., 1921, Fauna und gliederung des Neokoms in der argentinischen Kordillere: Zentralblatt für Mineralogie, Geologie und Paläontologie, v. 1921, p. 112119, 140–148.Google Scholar
Gerth, H., 1925, Contribuciones a la estratigrafía y la paleontología de los Andes Argentinos II. La Fauna Neocomiana de la Cordillera Argentina en la parte meridional de la provincia de Mendoza: Academia Nacional de Ciencias, Córdoba, Actas, v. 9, p. 57132.Google Scholar
Gerth, H., 1926, Die Fauna des Neokoms in der argentinische Kordillere: Geologische Rundschau, v. 17, p. 463494.Google Scholar
Gouiric-Cavalli, S., 2017, Large and mainly unnoticed: the first lower Tithonian record of a suspension-feeding pachycormid from Southern Gondwana: Ameghiniana v. 54, p. 283289.Google Scholar
Groeber, P., 1946, 1. Hoja Chos Malal. Observaciones geológicas a lo largo del meridiano 70: Revista de la Sociedad Geológica Argentina, v. 1, p. 177208.Google Scholar
Groeber, P., Stipanicic, P.N., and Mingramm, A., 1953, Jurásico, in Groeber, P., Stipanicic, P.N., and Mingramm, A., eds., Geografía de la República Argentina: Sociedad Argentina de Estudios Geográficos GAEA, v. 2, p. 9541.Google Scholar
Hammer, Ø., and Harper, D.A.T., 2006, Paleontological data analysis: Malden, Blackwell Publishing, 370 p.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, no. 1, p. 19. http://palaeoelectronica.org/2001_1/past/issue1_01.htm.Google Scholar
Harasewych, M.G., and Kiel, S., 2007, Upper Jurassic Pleurotomariidae (Gastropoda) from Southwestern Madagascar: The Nautilus, v. 121, p. 7689.Google Scholar
Hikuroa, D.C.H., 2009, Short note: second Jurassic marine reptile from the Antarctic Peninsula: Antarctic Science, v. 21, p. 169170.Google Scholar
Hillebrandt, A., von Smith, P., Westermann, G.E.G., and Callomon, J.H., 1992, Ammonite zones of the circum-Pacific region, in Westermann, G.E.G., ed., The Jurassic of the Circum-Pacific: World and Regional Geology 3: New York, Cambridge University Press, p. 247272.Google Scholar
Hoedemaeker, P.J., 1990, The Neocomian boundaries of the Tethyan Realm based on the distribution of ammonites: Cretaceous Research, v. 11, p. 331342.Google Scholar
Howlett, P.J., 1989, Late Jurassic–Early Cretaceous cephalopods of eastern Alexander Island, Antarctica: Special Papers in Palaentology, v. 41, p. 572.Google Scholar
Hyatt, A., 1900, Cephalopoda, in Zittel, K.A. von, ed., Textbook of Palaeontology: London and New York, Macmillan, p. 502592.Google Scholar
Imlay, R.W., 1942, Late Jurassic fossils from Cuba and their economic significance: Bulletin of the Geological Society of America, v. 53, p. 14171478.Google Scholar
Jattiot, R., Bucher, H., Brayard, A., Monnet, C., Jenks, J.F., and Hautmann, M., 2016, Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction: Papers in Paleontology, v. 2, p. 155188.Google Scholar
Kauffman, E.G., 1973, Cretaceous bivalves, in Hallam, A., ed., Atlas of Palaeobiogeography: Amsterdam, Elsevier, p. 353383.Google Scholar
Kennedy, W.J., and Cobban, W.A., 1976, Aspects of ammonite biology, biogeography and biostratigraphy: Special Papers in Palaeontology, v. 17, p. 194.Google Scholar
Kiel, S., 2006, New and little-known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagascar: Journal of Paleontology, v. 80, p. 455476.Google Scholar
Kiessling, W., Scasso, R., Zeiss, A., Riccardi, A.C., and Medina, F.A., 1999, Combined radiolarian-ammonite stratigraphy for the Late Jurassic of the Antarctic Peninsula: implications for radiolarian stratigraphy: Geodiversitas, v. 21, p. 687713.Google Scholar
Kietzmann, D.A., and Iglesia Llanos, M.P., 2017, Comment on Tethyan calpionellids in the Neuquén Basin (Argentine Andes), their significance in defining the Jurassic/Cretaceous boundary and pathways for Tethyan-Eastern Pacific connections by R. López-Martínez, B. Aguirre-Urreta, M. Lescano, A. Concheyro, V. Vennari and V. Ramos: Journal of South American Earth Sciences (2017). doi:10.1016/j.jsames.2017.10.002.Google Scholar
Kim, H.J., 2002, Estratigrafía y estructura de la región de Las Playas, provincia de Mendoza [M.Sc. thesis]: Ciudad Autónoma de Buenos Aires, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, 106 p.Google Scholar
Krantz, F., 1926, Die Ammoniten des Mittel- und Ober-tithons: Geologische Rundschau, v. 17, p. 427462.Google Scholar
Krishna, J., 1996, The Indian Mesozoic Chronicle. Sequence Stratigraphic Approach: Singapore, Springer Geology, 694 p.Google Scholar
Landman, N.H., and Geyssant, J.R., 1993, Heterochrony and ecology in Jurassic and Cretaceous Ammonites: Geobios, v. 15, p. 247255.Google Scholar
Leanza, A.F., 1945, Ammonites del Jurásico Superior y del Cretácico Inferior de la Sierra Azul, en la parte meridional de la provincia de Mendoza: Anales del Museo de9 La Plata, Nueva Serie, v. 1, p. 199.Google Scholar
Leanza, A.F., 1967, Anotaciones sobre los fósiles Jurásico-Cretácicos de Patagonia Austral (Colección Feruglio) conservados en la Universidad de Bolgna: Acta Geológica Lilloana, v. 9, p. 121186.Google Scholar
Leanza, H.A., 1996, The Tithonian Ammonite Genus Chigaroceras Howarth (1992) as a Bioevent Marker Between Iraq and Argentina, in Riccardi, A.C., ed., Advances in Jurassic Research: GeoResearch Forum, v. 1–2, p. 451458.Google Scholar
Leanza, H.A., 1981, Faunas de ammonites del Jurásico superior y del Cretácico inferior de América del Sur, con especial consideración de la Argentina, in Volkheimer, W., and Musacchio, E., eds., Cuencas Sedimentarias del Jurásico y Cretácico de América del Sur: Buenos Aires, Comité Suda-mericano del Jurásico y Cretácico, v. 2, p. 559597.Google Scholar
Lehmann, J., Ifrim, C., Bulot, L., and Frau, C., 2015, Paleobiogeography of Early Cretaceous Ammonoids, in Klug, C., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: from Anatomy to Ecology: Topics in Geobiology 43, p. 229257.Google Scholar
López-Martínez, R., Aguirre-Urreta, B., Lescano, M., Concheyro, A., Vennari, V., and Ramos, V., 2017, Tethyan calpionellids in the Neuquén Basin (Argentine Andes), their significance in defining the Jurassic/Cretaceous boundary and pathways for Tethyan-Eastern Pacific connections: Journal of South American Earth Sciences, v. 78, p. 116125.Google Scholar
López-Martínez, R., Aguirre-Urreta, B., Lescano, M., Concheyro, A., Vennari, V., and Ramos, V.A., 2018, Reply to comments on: “Tethyan calpionellids in the Neuquén Basin (Argentine Andes), their significance in defining the Jurassic/Cretaceous boundary and pathways for Tethyan-Eastern Pacific connections” by Kietzmann & Iglesia Llanos. Journal of South American Earth Sciences, v. 84, p. 448453. doi: 10.1016/j.jsames.2017.12.003.Google Scholar
Martin, A.K., 2007, Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback: Tectonophysics, v. 445, p. 245272.Google Scholar
Mitchum, R.M., and Uliana, M., 1985, Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic–Lower Creataceous, Neuquén Basin, Argentina, in Berg, B.R., and Woolverton, D.G., eds., Seismic Stratigraphy 2. An Integrated Approach to Hydrocarbon Analysis: American Association of Petroleum Geologists Memoir 39, p. 255283.Google Scholar
Monnet, C., Bucher, H., Wasmer, M., and Guex, J., 2010, Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability: Palaeontology, v. 53, p. 961996.Google Scholar
Monnet, C., De Baets, K., and Yacobucci, M., 2015, Buckman's Rules of Covariation, in Klug, C., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: from Anatomy to Ecology: Topics in Geobiology 43, p. 6794.Google Scholar
Mutterlose, J., 1986, Upper Jurassic belemnites from the Orville Coast, Western Antarctica, and their paleobiogeographical significance: British Antarctic Survey Bulletin, v. 70, p. 122.Google Scholar
Myczynski, R., 1996, Discusión sobre la presencia de los géneros Parodontoceras Spath, 1923 y Lytohoplites Spath, 1925 en el Tithoniano de Cuba: Fourth International Symposium on Cephalopods, Present and Past, Granada, Spain, 1996, p. 125–126.Google Scholar
Myczynski, R., 1999, Some ammonite genera from the Tithonian of western Cuba and their palaeobiogeographic importance: Studia Geologica Polonica, v. 6, p. 93112.Google Scholar
O'Gorman, J.P., Gouiric-Cavalli, S., Scasso, R.A., Reguero, M., Moly, J.J., and Burlaille, L.A., 2018, A Late Jurassic plesiosaur in Antarcica: evidence of the dispersion of marine fauna through the Trans-Erythraean Seaway?: Comptes Rendus Paleovol, v. 17, p. 158165.Google Scholar
Oppel, A., 1865, Die Titonische Etage: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 17, p. 535558.Google Scholar
Parent, H., Scherzinger, A., and Schweigert, G., 2011, The Tithonian–Berriasian ammonite fauna and stratigraphy of Arroyo Cieneguita, Neuquén-Mendoza Basin, Argentina: Boletín del Instituto de Fisiografía y Geología, v. 79–81, p. 2194.Google Scholar
Parent, H., Garrido, A.C., Scherzinger, A., Schweigert, G., and Fözy, I., 2015, The Tithonian–Lower Valanginian stratigraphy and ammonite fauna of the Vaca Muerta Formation in Pampa Tril, Neuquén Basin, Argentina: Boletín del Instituto de Fisiografía y Geología, v. 86, p. 196.Google Scholar
Prasad, G.V.R., Pandey, D.K., Alberti, M., Fürsich, F.T., Thakkar, M.G., and Chauhan, G.D., 2017, Discovery of the first ichthyosaur from the Jurassic of India: implications for Gondwanan palaeobiogegraphy: PLoS ONE 12: e0185851. doi: 10.1371/journal.pone.0185851.Google Scholar
Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Idakieva, V., Ivanov, M., Kakabadze, M.V., Moreno-Bedmar, J.A., Sandoval, J., Baraboshkin, E.J., Çaglar, M.K., Fözy, I., González-Arreola, C., Kenjo, S., Lukeneder, A., Raisossadat, S.N., Rawson, P.F., and Tavera, J.M., 2014, Report on the 5° International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group”: Cretaceous Research, v. 50, p. 126137.Google Scholar
Reinhardt, P., 1967, Fossile Coccolithen mit rhagoidem Zentralfeld (Fam. Ahmuellerellaceae, Subord. Coccolithineae): Neues Jahrbuch für Geologie und Paläontologie Monatshefte, v. 1967, p. 163178.Google Scholar
Reyment, R.A., and Tait, E.A., 1972, Biostratigraphic dating of the early history of the South Atlantic Ocean: Philosophical Transactions of the Royal Society of London, v. B264, p. 5595.Google Scholar
Riccardi, A.C., 1977, Berriasian invertebrate faunas from the Springhill Formation in southern Patagonia: Neues Jarhbuch für Geologie und Paläontologie, v. 155, p. 216–152.Google Scholar
Riccardi, A.C., 1988, The Cretaceous System of southern South America: Geological Society of America Memoir 168, 161 p.Google Scholar
Riccardi, A.C., 1991, Jurassic and Cretaceous marine connections between the Southeast Pacific and Tethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 87, p. 155189.Google Scholar
Riccardi, A.C., 2008, El Jurásico de la Argentina y sus amonites: Revista de la Asociación Geológica Argentina, v. 63, p. 625643.Google Scholar
Riccardi, A.C., 2015, Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina: Volumina Jurassica, v. 13, p. 2352.Google Scholar
Riccardi, A.C., Leanza, H.A., and Volkheimer, W., 1990, 3. South America and Antarctic Peninsula. 3.3. Upper Jurassic of South America and Antarctic Peninsula: Newsletters on Stratigraphy, v. 21, p. 129147.Google Scholar
Salazar Soto, C. 2012. The Jurassic-Cretaceous boundary (Tithonian–Hauterivian) in the Andean Basin of Central Chile: ammonites, bio- and sequence stratigraphy and palaeobiogeography [Inaugural Disertation]: Heildeberg, Der Naturwissenschaften-Mathematischen Gesamtfakultät Der Rupecht-Karls-Universität Heildeberg, 387 p.Google Scholar
Salazar Soto, C., and Stinnesbeck, W., 2015, Tithonian–Berrisian ammonites from the Baños del Flaco Formation, central Chile: Journal of Systematic Palaeontology, v. 0 (2015), p. 134.Google Scholar
Salfeld, H., 1921, Kiel- und Furchenbildung auf der Schalenaussenseite der Ammonoideen in ihrer Bedeutung für die Systematik und Festlegung von Biozonen: Zentralblatt für Mineralogie, Geologie und Paläontologie, v. 1921, p. 343347.Google Scholar
Shultz, M.R., Fildani, A., and Suarez, M., 2003, Occurrence of the southernmost South American ichthyosaur (Middle Jurassic–Lower Cretaceous), Parque Nacional Torres del Paine, Patagonia, southernmost Chile: Palaios, v. 18, p. 6973.Google Scholar
Smith, A.G., Smith, D.G., and Funnell, B.M., 1994, Atlas of Mesozoic and Cenozoic Coastlines: Cambridge, Cambridge University Press, 99 p.Google Scholar
Spath, L.F., 1922, On Cretaceous Ammonoidea from Angola, collected by Professor J.W. Gregory, D. Sc. F.R.S: Transactions of the Royal Society of Edinburgh, v. 53, p. 91160.Google Scholar
Spath, L.F., 1925, Amonites and aptychi, in Wyllie, B.K.W., and Smelly, W.R., eds., On the Collections of Fossils and Rocks from Somaliland. Part 7: Monograph Hunterian Museum University 4, p.111164.Google Scholar
Spath, L.F., 1939, The Cephalopoda of the Neocomian Belemnite Beds of the Salt Range: Palaeontologia Indica: Memoirs of the Geological Survey of India (new series) 25, 154 p.Google Scholar
Steinmann, G., 1890, Cephalopoda, in Steinmann, G., and Döderlein, L. eds., Elemente der Paläontologie: Leipzig, Engelmann, p. 344475.Google Scholar
Steuer, A., 1897, Argentinische Jura-Ablagerungen: Ein Beitrag zur Kenntniss der Geologie und Paleontologie der argentinischen Anden: Palaeontologische Abhandlungen Jena, N.S., v. 7, p. 127222.Google Scholar
Steuer, A., 1921, Estratos Jurásicos Argentinos. Contribución al conocimiento de la Geología y la Paleontología de los Andes Argentinos entre el Río Grande y el Río Atuel: Academia Nacional de Ciencias, Córdoba, Actas 7, p. 25128.Google Scholar
Stradner, H., 1963. New contributions to Mesozoic stratigraphy by means of nannofossils: Proceedings of the Sixth World Petroleum Congress, Section 1, Paper 4, p. 167–183.Google Scholar
Thomson, M.R.A., 1979, Upper Jurassic and Lower Cretaceous ammonite faunas of the Ablation Point area, Alexander Island: British Antarctic Survey Scientific Reports, v. 97, p. 137.Google Scholar
Tintant, H., 1980, Problématique de l'espèce en paléontologie: Mémoire de la Société Géologique de France, v. 40, p. 321372.Google Scholar
Vennari, V.V., 2018, Reappraisal of the ammonoid genus Lytohoplites Spath, 1925 in west-central Argentina: variability and updated stratigraphic occurrence.: Tenth International Congress on the Jurassic System, San Luis Potosí, México, Actas, p. 181183.Google Scholar
Vennari, V.V., and Aguirre-Urreta, B., 2017, Earliest records of the Genus Spiticeras Uhlig in the Neuquén Basin, Argentina: systematic and biostratigraphic implications: Ameghiniana, v. 54, p. 83106.Google Scholar
Vennari, V.V., Lescano, M., and Kietzmann, D., 2010, Amonoideos y Nanofósiles calcáreos del Tithoniano de la Formación Vaca Muerta en Arroyo Durazno, centro-oeste de Mendoza: Tenth Congreso Argentino de Paleontología y Bioestratigrafía and seventh Congreso Latinoamericano de Paleontología, La Plata, Argentina, Resúmenes, p. 92.Google Scholar
Vennari, V.V., Lescano, M.A., Naipauer, M., Aguirre-Urreta, M.B., Concheyro, A., Shaltegger, U., Armstrong, R., Pimentel, M., and Ramos, V.A., 2014, New constraints in the Jurassic/Cretaceous boundary in the High Andes using high precision U-Pb data: Gondwana Research, v. 26, p. 374385.Google Scholar
Wani, R. and Gupta, N.S., 2015, Ammonoid taphonomy, in Klug, C., De Baets, K., Kruta, I., and Mapes, R.H., eds., Ammonoid Paleobiology: from Anatomy to Ecology. Topics in Geobiology 43, p. 555598.Google Scholar
Weaver, C., 1931, Paleontology of the Jurassic and Cretaceous of West Central Argentina: Memoirs of the University of Washington 1, 496 p.Google Scholar
Westermann, G.E.G., 1966, Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen): Neues Jahrbuch für Geologie und Paläontologie, v. 124, p. 289312.Google Scholar
Westphal, H., Head, M.J., and Munecke, A., 2000, Differential diagenesis of rhythmic limestone alternations supported by palynological evidence: Journal of Sedimentary Research, v. 70, p. 715725.Google Scholar
Whitham, A.G., and Doyle, P., 1989, Stratigraphy of the Upper Jurassic-Lower Cretaceous Nordenskjöld Formation of eastern Graham Land, Antarctica: Journal of South American Earth Sciences, v. 2, p. 371384.Google Scholar
Wimbledon, W.A.P., Reháková, D., Pszczólkowski, A., Casellato, C.E., Halásová, E., Frau, C., Bulot, L.G., Grabowski, J., Sobién, K., Pruner, P., Schnabl, P., and Cížková, K. 2013, An account of the bio- and magnetostratigraphy of the Upper Tithonian-Lower Berriasian interval at Le Chouet, Drôme (SE France): Geologica Carphatica, v. 64, p. 437460.Google Scholar
Windhausen, A., 1931, Geología Argentina. Segunda parte: Geología Histórica y Regional del territorio argentino: Buenos Aires, Jacobo Peuser Ltda., 646 p.Google Scholar
Wright, C.W., Callomon, J.H., Howarth, M.K., 1996, Cretaceous Ammonoidea. Treatise on Invertebrate Paleontology, Pt. L, Mollusca 4, revised: Lawrence, Kansas, Geological Society of America and University of Kansas Press, 362 p.Google Scholar
Yacobucci, M.M., 2004, Buckman's paradox: variability and constraints on ammonoid ornament and shell shape: Lethaia, v. 37, p. 5769.Google Scholar
Zeiss, A., and Leanza, H.A., 2010, Upper Jurassic (Tithonian) ammonites from the lithographic limestones of the Zapala region, Neuquén Basin, Argentina: Beringeria, v. 41, p. 2576.Google Scholar
Zittel, K.A. von, 1884, Cephalopoda, in: Zittel, K.A. von, ed., Handbuch der Palaeontologie Band 1: Munich and Leipzig, Oldenbourg, p. 329522.Google Scholar