Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T08:07:28.125Z Has data issue: false hasContentIssue false

In situ earliest Cambrian tube worms and the oldest metazoan-constructed biostrome (Placentian Series, southeastern Newfoundland)

Published online by Cambridge University Press:  20 May 2016

Ed Landing*
Affiliation:
New York State Geological Survey, The State Education Department, Albany 12230

Abstract

“Ladatheca” cylindrica (Grabau, 1900) was a eurytopic metazoan with a calcareous operculum and an elongate, gently tapering conch up to 15+ cm long and with an apical angle of approximately 0.75–2.0°. This apparent polychaete was geographically widespread in the sub-trilobitic Lower Cambrian of middle latitude, siliciclastic (middle and upper Placentian Series, Avalon Zone) and low latitude, carbonate platform (Tommotian Stage, Siberia(?) and Kazakhstan; and, probably, the upper Meishucunian Stage, southwestern China) sequences.

In situ conchs (vertically to steeply inclined, apex down) of “Ladatheca” cylindrica are common in deep subtidal, siliciclastic mudstones (Chapel Island Formation) and in a peritidal algal mud mound(?) limestone (West Centre Cove Formation) in southeastern Newfoundland. Closely juxtaposed conchs locally form a worm reef at the top of the West Centre Cove Formation. This structure is older than the oldest archaeocyathan build-ups and is the earliest known metazoan-constructed biostrome. “Ladatheca” cylindrica was a dominant element of the sessile benthos prior to its apparent ecological displacement by Coleoloides typicalis Walcott, 1889, in the upper Placentian Series.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balsam, W. L., and Vogel, S. 1973. Water movement in archaeocyathids: evidence and implications in passive flow in models. Journal of Paleontology, 47:979984.Google Scholar
Bandel, K. 1986. The reconstruction of “Hyolithes kingi” as annelid worm from the Cambrian of Jordan. Mitteilung der Geologisches-Palaontologisches Institut der Universitat Hamburg, 61:35101.Google Scholar
Billings, E. 1872. On some new species of Palaeozoic fossils. The Canadian Naturalist, 6:213222.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event, p. 103159. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. The Systematics Association Special Volume 12. Academic Press, New York.Google Scholar
Brasier, M. D. 1985. Evolutionary and geological events across the Precambrian–Cambrian boundary. Geology Today, 1:141146.CrossRefGoogle Scholar
Brasier, M. D., and Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic–Lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology, 27:3557.CrossRefGoogle Scholar
Brenchley, G. A. 1982. Mechanisms of spatial competition in marine soft bottom communities. Journal of Experimental Marine Biology and Ecology, 60:1733.CrossRefGoogle Scholar
Burchette, T. P., and Riding, R. 1977. Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes. Lethaia, 10:1728.CrossRefGoogle Scholar
Dick, V. B., and Brett, C. E. 1985. Petrology, taphonomy, and sedimentary environments of pyritic fossil beds from the Hamilton Group (Middle Devonian) of western New York, p. 102128. In Brett, C. E. (ed.), Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State. Part I. New York State Museum Bulletin 457.Google Scholar
Dzik, J. 1980. Ontogeny of Bactrotheca and related hyoliths. Geologiska Foreningens i Stockholm Forhandlingar, 102:223233.CrossRefGoogle Scholar
Germs, G. J. B. 1972. New shelly fossils from the Nama Group, Southwest Africa. American Journal of Science, 272:752761.CrossRefGoogle Scholar
Glaessner, M. F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Journal of the Geological Society of London, 132:259275.CrossRefGoogle Scholar
Grabau, A. W. 1900. Palaeontology of the Cambrian terranes of the Boston Basin. Occasional Papers of the Boston Society of Natural History, 4:601694.Google Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290-A:261294.Google ScholarPubMed
Groom, T. 1902. The sequence of Cambrian and associated beds of the Malvern Hills. Quarterly Journal of the Geological Association of London, 58:89135.CrossRefGoogle Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire, England. Palaeontographica Abteilung A, 198:41100.Google Scholar
Holl, H. B. 1865. On the geological structure of the Malvern Hills and adjacent districts. Quarterly Journal of the Geological Society of London, 21:72108.CrossRefGoogle Scholar
Howell, B. F. 1964. Worms, p. W144W177. In Moore, R. C. (ed.), Miscellanea: Conodonts, Conoidal Shells of Uncertain Affinities, Worms, Trace Fossils, and Problematica. Treatise on Invertebrate Paleontology, Part W. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hutchinson, R. D. 1962. Cambrian stratigraphy and trilobite faunas of southwestern Newfoundland. Geological Survey of Canada Bulletin 88, 156 p.CrossRefGoogle Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile organisms, p. 499555. In Larwood, G. P. and Rosen, B. R. (eds.), Biology and Systematics of Colonial Organisms. Academic Press, New York.Google Scholar
Jackson, J. B. C. 1983. Biological determinants of present and past sessile animal distributions, p. 39120. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Jenness, S. E. 1963. Terra Nova and Bonavista map-areas, Newfoundland. Geological Survey of Canada Memoir 327, 184 p.CrossRefGoogle Scholar
Johnson, R. J. E., and van der Voo, R. 1985. Middle Cambrian paleomagnetism of the Avalon terrane in Cape Breton Island, Nova Scotia. Tectonics, 4:629651.CrossRefGoogle Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology, 62:661695.Google Scholar
Landing, E. 1989. Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crosbyi Grabau. Journal of Paleontology, 63:566573.CrossRefGoogle Scholar
Landing, E. 1991. Upper Precambrian through Lower Cambrian of Cape Breton Island: faunas, paleoenvironments, and stratigraphic revision. Journal of Paleontology, 65:570595.CrossRefGoogle Scholar
Landing, E. 1992. Lower Cambrian of southeastern Newfoundland: epeirogeny and Lazarus faunas, lithofacies-biofacies linkages, and the myth of a global chronostratigraphy, p. 283309. In Lipps, J. and Signor, P. W. (eds.), Origins and Early Evolution of Metazoa. Plenum Press, New York.CrossRefGoogle Scholar
Landing, E., and Benus, A. P. 1988a. Cambrian depositional history and stratigraphy, Avalon–Bonavista region, southeastern Newfoundland, 50 p. In Davenport, P. H., Hiscott, R. N., O'Neil, P. P., and Nolan, L. W. (eds.), Geological Association of Canada Annual Field Trip Guidebook, Trip A3. Geological Association of Canada, Newfoundland Section, St. John's.Google Scholar
Landing, E., and Benus, A. P. 1988b. Stratigraphy of the Bonavista Group, southeastern Newfoundland: growth faults and the distribution of the sub-trilobitic Lower Cambrian, p. 5971. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils, and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E., and Murphy, J. B. 1991. Uppermost Precambrian(?)–Lower Cambrian of mainland Nova Scotia: faunas, depositional environments, and stratigraphic revision. Journal of Paleontology, 65:382396.CrossRefGoogle Scholar
Landing, E., Myrow, P., Benus, A. P., and Narbonne, G. M. 1989. The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology, 63:739769.CrossRefGoogle Scholar
Landing, E., Narbonne, G. M., Myrow, P., Benus, A. P., and Anderson, M. M. 1988. Faunas and depositional environments of the upper Precambrian through Lower Cambrian, southeastern Newfoundland, p. 1852. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils, and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E., von Bitter, P. H., Benus, A. P., and Albanese, J. R. 1984. Oldest “tube worm”–algal mud mound associations (Lower Cambrian, eastern Newfoundland). Geological Society of America, Abstracts with Programs, 16:45.Google Scholar
Luo, H., Jiang, X., Wu, X., Song, X., Ouyang, L., Xing, Y., Liu, G., Zang, S., and Tao, Y. 1984. Sinian–Cambrian Boundary Stratotype at Meishucun, Jinning, Yunnan, China. The People's Publishing House, Yunnan, 154 p.Google Scholar
Missarzhevsky, V. V. 1974. Noviye danniye o dreyneeshikh okamenelostyakh rannego Kembriya Sibirskoy Platformi, p. 179189. In Biostratigraphiya i Paleontologiya Nizhnego Kembriya Evropii i Sibironoe Asii. Izdatel'stvo “Nauka,” Moscow.Google Scholar
Missarzhevsky, V. V. 1983. Stratigraphiya drevneyschich tolshch Phanerozoya Anabarskogo Massiva. Sovetskaya Geologiya, 9:6273.Google Scholar
Missarzhevsky, V. V., and Mambetov, A. M. 1981. Stratigraphiya i fauna pogranichnykh sloev Kembriya i Dokembriya Malogo Karatau. Izdatel'stvo “Nauka,” Moscow, 99 p.Google Scholar
Myrow, P., Narbonne, G. M., and Hiscott, R. N. 1988. Storm-shelf and tidal deposits of the Chapel Island and Random Formations, Burin Peninsula: facies and trace fossils, 105 p. In Davenport, P. H., Hiscott, R. N., O'Neil, P. P., and Nolan, L. W. (eds.), Geological Association of Canada Annual Meeting, Field Trip Guidebook, Trip B6. Geological Association of Canada, Newfoundland Section, St. John's.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains area, northwestern Canada. Palaeontology, 33:945980.Google Scholar
Narbonne, G. M., and Myrow, P. 1988. Trace fossil biostratigraphy in the Precambrian–Cambrian boundary interval, p. 7276. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils, and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Narbonne, G. M., Myrow., P., Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:12771293.CrossRefGoogle Scholar
Nowlan, G. S., Narbonne, G. M., and Fritz, W. H. 1985. Small shelly fossils near the Precambrian–Cambrian boundary in the Yukon Territory, Canada. Lethaia, 18:233256.CrossRefGoogle Scholar
Pojeta, J., Runnegar, B., and Kriz, J. 1973. Fordilla troyensis: the oldest known pelecypod. Science, 180:866868.CrossRefGoogle ScholarPubMed
Pratt, B. R. 1982. Stromatolitic framework of carbonate mud-mounds. Journal of Sedimentary Petrology, 52:12031227.Google Scholar
Qian, Y. 1978. The Early Cambrian hyolithids in central and southwest China and their stratigraphical significance. Memoirs of the Nanjing Institute of Geology and Palaeontology, Academica Sinica, 11:138 [in Chinese with English summary].Google Scholar
Rozanov, A. YU., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidarov, A. D. 1969. Tommotskii yarus i problema nizhnej granitsky Kembriya. Trudy Geologischeskogy Instituta, Akademiya Nauk SSSR, Ordena Trudovogo Krasnogo Zhumeni Geologicheskii Institut, 206, “Nauka,” Moscow, 359 p.Google Scholar
Runnegar, B., Pojeta, J. Jr., Morris, M. J., Taylor, J. D., Taylor, M. E., and McLung, G. 1975. Biology of the Hyolitha. Lethaia, 8:181191.CrossRefGoogle Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications, p. 73108. In Kauffman, E. G. and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Shaler, N. S., and Foerste, A. F. 1888. Preliminary description of North Attleboro fossils. Harvard Museum of Comparative Zoology Bulletin, 16:2741.Google Scholar
Sysoiev, V. A. 1959. Chioliti roda Circotheca iz Nizhnego Kembriya Taimyrskogo Natsional'nogo Okruga. Paleontologichiskyia Zhurnal, 36:2554.Google Scholar
Sysoiev, V. A. 1968. Stratigrafiya i chioliti drevneishich sloev Nizhnego Kembriya Sibirskoy Platformi. Izdatel'stvo “Nauka,” 152 p.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 511 p.Google Scholar
Voronova, L. G., and Missarzhevsky, V. V. 1969. Nakhodi vodorosley i trubok chervey v pogranichnikh sloyakh Kembriya i Dokembriya na severe Sibirskoy Platformy. Doklady Akademii Nauk SSSR, 184:207210.Google Scholar
Walcott, C. D. 1889. Descriptive notes on new genera and species from the Lower Cambrian or Olenellus Zone of North America. Proceedings of the U.S. National Museum, 12:3346.CrossRefGoogle Scholar