Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T03:12:41.801Z Has data issue: false hasContentIssue false

Ichnotaxobases for bioerosion trace fossils in bones

Published online by Cambridge University Press:  14 July 2015

Cecilia A. Pirrone
Affiliation:
Departamento de Paleontología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET-Mendoza, Av. Ruiz Leal s/n 5500 Mendoza, Argentina,
Luis A. Buatois
Affiliation:
Department of Geological Sciences, University of Saskatchewan, 114 Science Place SK S7N 5E2 Saskatoon, Canada,
Richard G. Bromley
Affiliation:
Geological Museum–SNM, Øster Voldgade 5–7 DK-1350 Copenhagen, Denmark,

Abstract

Bioerosion trace fossils in bones are defined as biogenic structures that cut or destroy hard bone tissue as the result of mechanical and/or chemical processes. Under the premise that their paleoecological potential can completely be realized only through correct taxonomic assignment, this work focuses on the methodology for naming these biogenic structures. Thus, we propose the following ichnotaxobases in order to assist in naming trace fossils in bones: general morphology, bioglyphs, filling, branching, pattern of occurrence, and site of emplacement. The most common general morphologies are: pits and holes (borings); chambers; trails; tubes; channels (canals); grooves; striae; and furrows. The main types of bioglyphs are grooves and scratches, which may display different arrangements, such as parallel and opposing, or arcuate paired. The nature of the fill may help recognition of the origin, composition, and relationship with the surrounding sediment, as well as processes of destruction or consumption of bony tissue. The structure and layout of the filling, such as meniscate backfill or pelleted filling, offer information about the bioeroding processes. Branching structures on cortical bone are present in canals and furrows. Where the trace penetrates spongy bone, branching structures are forming tunnels that may connect internal chambers. The common patterns of occurrence are individual, paired, grouped, overlapping, lined, and arcuate. The site of emplacement may be in cortical bone, spongy bone, articular surfaces, internal bone microstructures, and external bone anatomical structures. The use of substrate as an ichnotaxobase is problematic, but as biological substrate, bone itself is a valuable source of information for paleoecologic and ethologic inferences. Given the paleontological importance of bioerosion trace fossils in bones, we underscore interactions between ichnology and other sciences, such as forensic entomology, archaeology, paleoecology, and taphonomy.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backwell, L. R., Parkinson, A. H., Roberts, E. M., D'errico, F., and Huchet, J. 2012. Criteria for identifying bone modification by termites in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 338:7287.Google Scholar
Bader, K. S., Hasiotis, S. T., and Martin, L. D. 2009. Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the Upper Jurassic Morrison Formation, Northeastern Wyoming. Palaios, 24:140158.CrossRefGoogle Scholar
Baucon, A., Privitera, S., Morandini Bonacossi, D., Canci, A., Neto De Carvalho, C., Kyriazi, E., Laborel, J., Laborel-Deguen, F., Morhange, C., and Marriner, N. 2008. Principles of ichnoarchaeology: New frontiers for studying past times, p. 4372. In Avanzini, M. and Petti, F. (eds.), Italian Ichnology, Studi Trentini di Scienze Naturali, Acta Geologica 83.Google Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology, 4:150162.CrossRefGoogle Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A. 2000. Taphonomy and paleobiology. Paleobiology, 26:103147.Google Scholar
Benecke, M. 2004. Forensic entomology: Arthropods and corpses, p. 207240. In Tsokos, M. (ed.), Forensic Pathology Reviews Volume II, Humana Press, Totowa, New Jersey.Google Scholar
Bertling, M., Braddy, R., Bromley, R. G., Demathieu, G., Genise, J., Mikuláš, R., Nielsen, J., Nielsen, K., Rindsberg, A., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: A uniform approach. Lethaia, 39:265286.Google Scholar
Cílek, V., Ložek, V., Mikuláš, R., and Žák, K., 2007. The Holocene sedimentation under sandstone rockshelters of Northern Bohemia, Czech Republic. Terra Praehistorica, Festschrift für Klaus-Dieter Jäger zum 70. Geburstag, 80–95. Beier and Beran, Weimar.Google Scholar
Britt, B. B., Scheetz, R. D., and Dangerfield, A. 2008. A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, U.S.A. Ichnos, 15:5971.Google Scholar
Bromley, R. G. 1996. Trace Fossils: Biology, Taphonomy and Applications (2nd edition). Chapman and Hall, London, 361 p.Google Scholar
Bromley, R. G. 2001. Tetrapod tracks deeply set in unstable substrates: Recent musk oxen in fluid earth (East Greenland) and Pleistocene caprines in aeolian sand (Mallorca). Bulletin of the Geological Society of Denmark, 48:209215.Google Scholar
Bromley, R. G. and Frey, R. W. 1974. Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha . Bulletin of the Geological Society of Denmark, 23:311335.Google Scholar
Buatois, L. A. and Mángano, M. G. 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, New York.CrossRefGoogle Scholar
Carmona, N. B., Mángano, M. G., Buatois, L. A., and Ponce, J. J. 2007. Bivalve trace fossils in an early Miocene discontinuity surface in Patagonia, Argentina: burrowing behavior and implications for ichnotaxonomy at the firmground–hardground divide. Palaeogeography, Palaeoclimatology, Palaeoecology, 255:329341.Google Scholar
Clifton, H. E. and Thompson, J. K. 1978. Macaronichnus segregatis: A feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology, 48:293301.Google Scholar
Cruickshank, A. R. I. 1986. Archosaur predation on an east African Middle Triassic dicynodont. Palaeontology, 29:415422.Google Scholar
Currie, P. J. and Jacobsen, A. R. 1995. An azhdarchid pterosaur eaten by a velociraptorine theropod. Canadian Journal of Earth Science, 32:922925.Google Scholar
Cutler, A. H., Behrensmeyer, A. K., and Chapman, R. E. 1999. Environmental information in a recent bone assemblage: Roles of taphonomic processes and ecological change. Palaeogeography, Palaeoclimatology, Palaeoecology, 149:359372.CrossRefGoogle Scholar
D'alessandro, A. and Bromley, R. G. 1987. Meniscate trace fossils and the MuensteriaTaenidium problem. Palaeontology, 30:743763.Google Scholar
De Gibert, J. M. and Ekdale, A. A. 2010. Paleobiology of the crustacean trace fossil Spongeliomorpha iberica in the Miocene of southeastern Spain. Acta Palaeontologica Polonica, 55:733740.Google Scholar
Delaney-Rivera, C., Plummer, T. W., Hodgson, J. A., Forrertel, F., and Oliver, J. S. 2009. Pits and pitfalls: Taxonomic variability and patterning in tooth mark dimensions. Journal of Archaeological Science, 36:25972608.Google Scholar
Donovan, S. K. 2002. A new ichnospecies of Gastrochaenolites Leymerie from the Pleistocene Port Morant Formation of southeast Jamaica and the taphonomy of calcareous linings in clavate borings. Ichnos, 9, 6166.CrossRefGoogle Scholar
Donovan, S. K. 2011. The Recent boring Gastrochaenolites ornatus Kelly and Bromley, 1984, in a Chalk cobble from Cromer, England. Bulletin of the Mizunami Fossil Museum, 37:185188.Google Scholar
Ekdale, A. A. and De Gibert, J. M. 2010. Paleoethologic significance of bioglyphs: Fingerprints of the subterraneans. Palaios, 25:540545.Google Scholar
Fornós, J. J., Bromley, R. G., Clemmensen, L. B., and Rodríguez-Perea, A. 2002. Tracks and trackways of Myotragus balearicus Bate (Artiodactyla, Caprinae) in Pleistocene aeolianites from Mallorca (Western Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology, 180:277313.CrossRefGoogle Scholar
Genise, J. F. 2004. Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, ants, and termites, p. 419453. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphical Analysis, Geological Society, Special Publication 228.Google Scholar
Hasiotis, S. T., Fiorillo, A. R., and Hanna, R., 1999. Preliminary report on borings in Jurassic dinosaur bones: Evidence for invertebrate-vertebrate interactions. In Gillette, D. D. (ed.), Vertebrate Paleontology in Utah: Utah Geological Survey; Miscellaneous Publication 99-1, p. 193200.Google Scholar
Haynes, G. 1983. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9:164172.CrossRefGoogle Scholar
Haynes, G. 1985. On watering holes, mineral licks, death, and predation, p. 5371. In Meltzer, D. and Mead, J. I. (eds.), Environments and Extinctions in Late Glacial North America. Center for the Study of Early Man, University of Maine, Orono.Google Scholar
Haynes, G. 1988. Mass deaths and serial predation: Comparative taphonomic studies of modern large-mammal deathsites. Journal of Archaeological Science, 15:219235.Google Scholar
Hladilová, Š. and Mikuláš, R. 2005. Fossil shark tooth. A remarkable working tool from the Pavlov I locality, p. 391395. In Svoboda, J. et al. (eds.), Pavlov I Southeast: A Window into the Gravettian Lifestyles. Archeoloigický ústav avčr, brno.Google Scholar
Hone, D. W. E. and Rauhut, O. W. M. 2010. Feeding behaviour and bone utilization by theropod dinosaurs. Lethaia, 43:232244.Google Scholar
Huchet, J. B., Deverly, D., Gutierrez, B., and Chauchat, C. 2011. Taphonomic evidence of a human skeleton gnawed by termites in a Moche-Civilisation grave at Huaca de la Luna, Peru. International Journal of Osteoarchaeology, 21:92102.Google Scholar
Jacobsen, A. R. 1998. Feeding behaviour of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology, 13:1726.CrossRefGoogle Scholar
Jacobsen, A. R. and Bromley, R. G. 2009. New ichnotaxa based on tooth impressions on dinosaur and whale bones. Geological Quarterly, 53:373382.Google Scholar
Kelly, S. R. A. and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27:793807.Google Scholar
Korsakov, S. A. and Savostin, G. A. 1975. Comparative performance of living and dead bony tissue under static and dynamic loading, p. 556558. In Mechanics of Composite Materials, 11, Springer, New York.Google Scholar
Laudet, F. and Antoine, P. 2004. Dermestidae (Insecta: Coleoptera) pupal chambers from a Tertiary mammal bone (phosphorites of Quercy): Taphonomic and palaeoenvironmental implications. Geobios, 37:376381.Google Scholar
Longrich, N. R. and Ryan, M. J. 2010. Mammalian tooth marks on the bones of dinosaurs and other Late Cretaceous vertebrates. Palaeontology, 53:703709.Google Scholar
Mángano, M. G., Buatois, L. A., West, R. R., and Maples, C. G. 2002. Ichnology of a Pennsylvanian Equatorial Tidal Flat—The Shull Shale Member at Waverly, Eastern Kansas. Kansas Geological Survey, Bulletin 245, 133 p.Google Scholar
Manning, P. L. 2004. A new approach to the analysis and interpretation of tracks: Examples from the Dinosauria, p. 93123. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphical Analysis. Geological Society of London Special Publication 228.Google Scholar
Martin, L. D. and West, L. D. 1995. The recognition and use of dermestid (Insecta, Coleoptera) pupation chambers in paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 113:303310.Google Scholar
Mikuláš, R. 1998. Two different meanings of the term “bioglyph” in the geological literature: History of the problem, present-day state, and possible resolution. Ichnos, 6:211213.CrossRefGoogle Scholar
Mikuláš, R. 2001. Modern and fossil traces in terrestrial lithic substrates. Ichnos, 8:177184.Google Scholar
Mikuláš, R., Kadlecova, E., Fejfar, O., and Dvořak, Z. 2006. Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: A case study from the Miocene of the Czech Republic. Ichnos, 13:115.CrossRefGoogle Scholar
Milán, J. and Bromley, R. G. 2006. True tracks, undertracks and eroded tracks, experimental work with tetrapod tracks in laboratory and field. Palaeogeography, Palaeoclimatology, Palaeoecology, 231:253264.CrossRefGoogle Scholar
Moore, J. C., Berlow, E. L., Coleman, D. C., De Ruiter, P. C., Dong, Q., Hastings, A., Johnson, N. C., Mccann, K. S., Melville, K., Morin, P. J., Nadelhoffer, K., Rosemond, A. D., Post, D. M., Sabo, J. L., Scow, K. M., Vanni, M. J., and Wall, D. H. 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters, 7:584600.Google Scholar
Muñiz, F., De Gibert, J. M., and Esperante, R. 2010. First trace-fossil evidence of bone-eating worms in whale carcasses. Palaios, 25:269273.Google Scholar
Neumann, A. C. 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Bermuda Biological Station, contribution N° 369. Marine Science Center, Lehigh University, contribution N° 65-3. Limnology and Oceanography, 11:92108.Google Scholar
Noriega, J. I., Cione, A. L., and Aceñolaza, F. G. 2007. Shark tooth marks on Miocene balaenopterid cetacean bones from Argentina. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 245:185192.Google Scholar
Novas, F. E., Ezcurra, M. D., and Lecuona, A. 2008. Orkoraptor burkei nov. gen. et sp., a large theropod from the Maastrichtian Pari Aike Formation, Southern Patagonia, Argentina. Cretaceous Research, 29:468480.Google Scholar
Paik, I. S. 2000. Bone chip-filled burrows associated with bored dinosaur bone in floodplain paleosols of the Cretaceous Hasandong Formation, Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 157:213225.Google Scholar
Pemberton, S. G. and Frey, R. W. 1982. Trace fossil nomenclature and the Planolites-Paleophycus dilemma. Journal of Paleontology, 56:843881.Google Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, Chichester.Google Scholar
Roberts, E. M., Rogers, R., and Foreman, B. Z. 2007. Continental insect borings in dinosaur bone: Examples from the Late Cretaceous of Madagascar and Utah. Journal of Paleontology, 81:201208.CrossRefGoogle Scholar
Rogers, R. R., Krause, D., and Rogers, K. C. 2003. Cannibalism in the Madagascan dinosaur Majungatholus atopus . Nature, 422:515518.Google Scholar
Tanke, D. H. and Currie, P. J. 2000. Head-biting behavior in theropod dinosaurs: Paleopathological evidence. Gaia, 15:167184.Google Scholar
Tapanila, L., Roberts, E. M., Bouaré, M. L., Sissoko, F., and O'Leary, M. A. 2004. Bivalve borings in phosphatic coprolites and bone, Cretaceous–Paleogene, Northeastern Mali. Palaios, 19:565573.Google Scholar
Thenius, E. 1988. Lebensspuren von aquatischen Insektenlarven aus dem Jungtertiär Niederösterreichs. Beiträge zur Paläontologie von Österreich, 14:117.Google Scholar
Trueman, C. N., Behrensmeyer, A. K., Tuross, N., and Weinerd, S. 2004. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31:721739.Google Scholar
Trueman, C. N., Privat, K., and Field, J. 2008. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeography, Palaeoclimatology, Palaeoecology, 266:160167.Google Scholar
Uchman, A. 1999. Ichnology of the Rhenodanubian Flysch (Lower Cretaceous–Eocene) in Austria and Germany. Beringeria, 25:67173.Google Scholar
West, D. L. and Hasiotis, S. T., 2007. Trace fossils in an archeological context: Examples from bison skeletons, Texas, USA, p. 545561. In Miller, W. III (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam.Google Scholar
Wilson, E. E. and Wolkovich, E. M. 2011. Scavenging: How carnivores and carrion structure communities. Trends in Ecology and Evolution, 26:129135.Google Scholar
Xing, L., Bell, P. R., Currie, P. J., Shibata, M., Tseng, K., and Dong, Z. 2012. A sauropod rib with an embedded theropod tooth: Direct evidence for feeding behaviour in the Jehol group, China. Lethaia, 45:500506.CrossRefGoogle Scholar