Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T21:37:55.409Z Has data issue: false hasContentIssue false

Ichnogenus Pholeus Fiege, 1944, revisited

Published online by Cambridge University Press:  14 July 2015

Dirk Knaust*
Affiliation:
A/S Norske Shell, Exploration & Production, Postboks 40, N-4098 Tananger, Norway,

Abstract

The ichnogenus Pholeus Fiege, 1944, is a common constituent of the Lower Muschelkalk (Middle Triassic) carbonates of the Germanic Basin, where it occurs in the upper part of shallowing upward cycles. It is restricted to a marly limestone lithofacies and is commonly associated with omission and erosion surfaces. The dwelling structures (domichnia) were created in a shallow-marine to lagoonal paleoenvironment in an intertidal to shallow subtidal setting. New material from Thuringia and Lower Saxony makes a reevaluation of Pholeus possible and confirms the validity of this ichnogenus. Certain features, such as general form, wall, lining, and branching differentiate it from similar trace fossils. In addition to the already described P. abomasoformis, three new ichnospecies are named for distinctive forms: P. bifurcatus, P. platiformis, and P. elongatus. Based on geometry, size, and wall lining, the burrow producers were most probably decapod crustaceans. Many similarities to modern burrows of Callianassa sp., Neocallichirus grandimina, and Nephrops norvegicus suggest thalassinian shrimps and lobsters as likely tracemakers of Pholeus burrows. Compound burrow systems and retrusive burrow parts with spreiten-like structures are common and point to an upward shifting of the burrows related to certain sediment input in relation to tidal currents.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T., and Bachmann, G. H. 1992. Sequence-stratigraphic framework of the German Triasssic. Sedimentary Geology, 80:115135.CrossRefGoogle Scholar
Akpan, E. B., and Nyong, E. E. 1987. Trace fossils assemblage and depositional environment of Turonian calcareous sandstones in the southern Benue Trough, Nigeria. Journal of African Sciences, 6:175180.Google Scholar
Atkinson, R. J. A. 1974. Spatial distribution of Nephrops burrows. Estuarine and Coastal Marine Science, 2:171176.CrossRefGoogle Scholar
Banerjee, I. 1982. Trace fossils of the bioturbate sandstone facies of the Eze-Aku Formation, Nigeria. Indian Journal of Earth Sciences, 9:9398.Google Scholar
Braithwaite, C. J. R., and Talbot, M. R. 1972. Crustacean burrows in the Seychelles, Indian Ocean, Palaeogeography, Palaeoclimatology, Palaeoecology, 11:265285.CrossRefGoogle Scholar
Bromley, R. G. 1996. Trace Fossils. Biology, Taphonomy and Applications. Chapman & Hall, London, 361 p.Google Scholar
Bromley, R. G., and Goldring, R. 1992. The palaeoburrows at the Cretaceous to Palaeocene firmground unconformity in southern England. Tertiary Research, 13:95102.Google Scholar
Buckman, J. O. 1994. Archaeonassa Fenton and Fenton 1937 reviewed. Ichnos, 3:185192.CrossRefGoogle Scholar
Chapman, C. J., and Rice, A. L. 1971. Some direct observations on the ecology and behaviour of the Norway lobster Nephrops norvegicus . Marine Biology, 10:321329.CrossRefGoogle Scholar
Dünkel, H., and Vath, U. 1991. Ein vollständiges Profil des Muschelkalks (Mitteltrias) der Dransfelder Hochfläche, SW Göttingen (Südniedersachsen). Geologisches Jahrbuch Hessen, 118:87126.Google Scholar
Dworschak, P. C., and Ott, J. A. 1993. Decapod burrows in mangrove-channel and back-reef environments at the Atlantic Barrier Reef, Belize, Ichnos, 2:277290.CrossRefGoogle Scholar
Ekdale, A. A. 1992. Muckraking and mudslinging: the joys of deposit-feeding. Short courses in paleontology, Paleontological Society, 5:145171.CrossRefGoogle Scholar
Fenton, C. L., and Fenton, M. A. 1937. Archaeonassa: Cambrian snail trails and burrows. American Midland Naturalist, 18:454456.CrossRefGoogle Scholar
Fiege, K. 1944. Lebensspuren aus dem Muschelkalk Nordwestdeutschlands. Neues Jahrbuch für Mineralogie, Geologie, Paläontologie, Abhandlungen, B 88:401426.Google Scholar
Frey, R. W., Curran, H. A., and Pemberton, S. G. 1984. Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus . Journal of Paleontology, 58:333350.Google Scholar
Frey, R. W., Howard, J. D., and Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:199229.CrossRefGoogle Scholar
Goldring, R. 1962. The trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Paläontologische Zeitschrift, 36:232251.CrossRefGoogle Scholar
Goldring, R. 1996. The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire. Journal of the Geological Society London, 153:255263.CrossRefGoogle Scholar
Häntzschel, W. 1962. Trace fossils and problematica, p. 177245. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, W. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Häntzschel, W. 1965. Vestigia invertebratorum et problematica, 142 p. Fossilium Catalogus I: Animalia, 108, W. Junk, s'Gravenhage.Google Scholar
Häntzschel, W. 1975. Trace fossils and problematica, 269 p. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, W, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hester, N. C., and Pryor, W. A. 1972. Blade-shaped crustacean burrows of Eocene age: a composite form of Ophiomorpha . Bulletin of the Geological Society of America, 83:677688.CrossRefGoogle Scholar
Hill, G. W., and Hunter, R. E. 1973. Burrows of the ghost crab Ocypode quadrata (Fabricius) on the Barrier Islands, South-Central Texas Coast. Journal of Sedimentary Petrology, 43:2430.Google Scholar
Hohenegger, J., and Pervesler, P. 1985. Orientation of crustacean burrows. Lethaia, 18:323339.CrossRefGoogle Scholar
Kamola, D. L. 1984. Trace fossils from marginal-marine facies of the Spring Canyon Member, Blackhawk Formation (Upper Cretaceous), East-Central Utah, Journal of Paleontology, 58:529541.Google Scholar
Kennedy, W. J. 1967. Burrows and surface traces from the Lower Chalk of southern England. Bulletin of the British Museum (Natural History), Geology, 15:125167.Google Scholar
Knaust, D. 1997. Die Karbonatrampe am SW-Rand des Persischen Golfes (V.A.E.)—rezentes Analogon für den Unteren Muschelkalk der Germanischen Trias? Greifswalder Geowissenschaftliche Beiträge, 5:101123.Google Scholar
Knaust, D. 1998. Trace fossils and ichnofabrics on the Lower Muschelkalk carbonate ramp (Triassic) of Germany: tool for high-resolution sequence stratigraphy. Geologische Rundschau, 87:2131.CrossRefGoogle Scholar
Knaust, D. 2000. Signatures of tectonically controlled sedimentation in Lower Muschelkalk carbonates (Middle Triassic) of the Germanic Basin, p. 893924. In Bachmann, G. H. and Lerche, I. (eds.), Epicontinental Triassic, Volume 2, Zentralblatt für Geologie und Paläontologie Teil 1, 1998. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Knaust, D. In press. Middle Triassic (Lower Muschelkalk) of the Germanic Basin. In Pollard, J., Goldring, R., Bromley, R. G., and Curran, H. A. (eds.), Ichnofabric Atlas. SEPM Atlas Series No. 2, Tulsa.Google Scholar
Knaust, D., Szulc, J., and Uchman, A. 1999. Spurenfossilien in der Germanischen Trias und deren Bedeutung, p. 229238. In Hauschke, N. and Wilde, V. (eds.), Trias—Eine ganz andere Welt. Mitteleuropa im frühen Erdmittelalter. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Kruck, W. 1974. Querplattung im Muschelkalk Nordwestdeutschlands. Mitteilungen Geologisch-Paläontologisches Institut Universität Hamburg, 43:127172.Google Scholar
Paul, J., and Franke, W. 1977. Sedimentologie einer Transgression: Die Röt/Muschelkalk-Grenze bei Göttingen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1977:148177.Google Scholar
Reis, O. M. 1910. Beobachtungen über Schichtenfolge und Gesteinsausbildungen in der fränkischen Unteren und Mittleren Trias. Geognostische Jahreshefte, 22:1285.Google Scholar
Reis, O. M. 1911. Erläuterungen zur geologischen Specialkarte Preussen, Blatt Mellrichstadt.Google Scholar
Reis, O. M. 1921. Über Bohrröhren in fossilen Schalen und über Spongeliomorpha . Zeitschrift der Deutschen Geologischen Gesellschaft, 73:224237.Google Scholar
Rice, A. L., and Chapman, C. J. 1971. Observations on the burrows and burrowing behaviour of two mud-dwelling decapod crustaceans, Nephrops norvegicus and Goneplax rhomboides . Marine Biology, 10:330342.CrossRefGoogle Scholar
Rieth, A. 1932. Neue Funde spongeliomorpher Fucoiden aus dem Jura Schwabens. Geologische und Paläontologische Abhandlungen, N.F., 19:257294.Google Scholar
Seilacher, A., and Hemleben, C. 1966. Spurenfauna und Bildungstiefe der Hunsrückschiefer (Unterdevon). Notizblatt des hessischen Landesamtes für Bodenforschung, 94:4053.Google Scholar
Szulc, J. 1991. The Muschelkalk in Poland, p. 5873. In Hagdorn, H. (ed.), Muschelkalk. A Field Guide. Goldschneck, Korb.Google Scholar
Verma, K. K. 1970. Occurrence of trace fossils in the Bagh Beds of Amba Dongar area, Gujarat State. Journal of the Indian Geoscience Association, 12:3740.Google Scholar