Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-18T19:40:21.584Z Has data issue: false hasContentIssue false

The green alga Chaetocladus (Dasycladales)

Published online by Cambridge University Press:  20 May 2016

Steven T. LoDuca*
Affiliation:
Department of Geography and Geology, Eastern Michigan University, Ypsilanti 48197

Abstract

Two species of the enigmatic alga Chaetocladus, C. ruedemanni (new species) and C. dubius (previously regarded as a graptolite incertae sedis), are described from the Silurian Lockport Group of New York and Ontario, Canada, respectively. A comprehensive investigation reveals that these and other Chaetocladus taxa occur in distinctive Konservat-Lagerstätten in association with other thallophytic algae, annelid worms, and lightly sclerotized arthropods. The sedimentology, taphonomy, and biotic composition of Chaetocladus-bearing deposits indicate that this alga thrived in shallow, stagnant, occasionally storm-agitated marine environments. In these settings, preservation of thallophytic algae and associated soft-bodied animals apparently was facilitated by a combination of obrution, anoxia, and early diagenesis of the burial muds.

The morphology of Chaetocladus corresponds to that characteristic of the green alga order Dasycladales, and it is herein referred to this long-ranging taxon as a representative of a new subtribe (Chaetocladinae, new subtribe) within the tribe Salpingoporelleae (emended herein), family Triploporellaceae (emended herein). This euspondyl, endosporate genus extends the range of the euspondyl dasyclads significantly, from the Early Devonian back to the Middle Ordovician, and bridges an evolutionary gap between early Paleozoic aspondyl, endosporate forms and middle Paleozoic euspondyl, cladosporate forms.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. 1988. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 14:139154.Google Scholar
Babcock, J. 1986. The puzzle of alga-like problematica, or rummaging around in the algal wastebasket, p. 1226. In Hoffman, A. and Nitecki, M. (eds.), Problematic Fossil Taxa, Oxford Monographs on Geology and Geophysics No. 5, Oxford University Press, New York.Google Scholar
Bassoullet, J. P., Bernier, P., Deloffre, R., Genot, P., Jaffrezo, M., Poignant, A. F., and Segnozac, G. 1975. Reflexions sur la systématique des Dasycladales fossiles. Géobios, 8:259290.Google Scholar
Bassoullet, J. P., Bernier, P., Deloffre, R., Genot, P., Jaffrezo, M., Poignant, A. F., and Segnozac, G. 1977. Classification criteria of fossil Dasycladales, p. 154166. In Flügel, E. (ed.), Fossil Algae. Springer, Berlin.Google Scholar
Bassoullet, J. P., Bernier, P., Deloffre, R., Genot, P., Jaffrezo, M., Poignant, A. F., and Vachard, D. 1979. Essai de classification des Dasycladales en tribus. 2e symposium international sur les algues fossiles. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 3:429442.Google Scholar
Berger, S., and Kaever, M. J. 1992. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Georg Thieme, Stuttgart, 247 p.Google Scholar
Dawson, J. W. 1890. On burrows and tracks of invertebrate animals in Paleozoic rocks and other markings. Quarterly Journal of the Geological Society of London, 46:595618.Google Scholar
Elliott, G. 1971. A new fossil alga from the English Silurian. Palaeontology, 14:637641.Google Scholar
Grant, C. 1894. Remarks on the annual excursion. Journal and Proceedings of the Hamilton Scientific Association, 10:7478.Google Scholar
Hewitt, R. A., and Birker, I. 1986. The Thallograptus and Diplospirograptus from the Silurian Eramosa Member in Hamilton (Ontario, Canada). Canadian Journal of Earth Sciences, 23:849853.Google Scholar
Høeg, O. A. 1926. Description of the fossil plants, p. 611. In Høeg, O. and Kiær, J., A new plant bearing horizon in the marine Ludlow of Ringerike. Avhandlinger utgitt av det Norske Videnskaps-Akademi, Oslo, I. Matematisk-Naturvidenskapelig Klasse.Google Scholar
Johnson, H. 1961. Review of Ordovician algae. Quarterly of the Colorado School of Mines, 56, 101 p.Google Scholar
Johnson, H., and Konishi, K. 1959. A review of Silurian (Gotlandian) algae, p. 1114. In Johnson, H., Konishi, K., and Rezak, R., Studies of Silurian (Gotlandian) Algae. Quarterly of the Colorado School of Mines, 54, 175 p.Google Scholar
Jux, U. 1964. Chaetocladus strunensis n. sp. eine von Spirobis besiedelte Pflanze aus dem oberen Plattenkalk von Bergisch Gladbach (Devon, Rheinisches Schiefergebirge). Palaeontographica, Abteilung B. 114:118133.Google Scholar
Kiær, J. 1926. Geological introduction, p. 36. In Høeg, O. and Kiær, J., A new plant bearing horizon in the marine Ludlow of Ringerike. Avhandlinger utgitt av det Norske Videnskaps-Akademi, Oslo, I. Matematisk-Naturvidenskapelig Klasse.Google Scholar
Kräusel, R., and Weyland, H. 1962. Algen und Psilophyten aus dem Unterdevon von Alken an der Mosel. Senckenbergiana Lethaea, 43:249282.Google Scholar
LoDuca, S. T. 1990a. The Medusaegraptus epibole: Paleontology, stratigraphy, taphonomy, and depositional environment of Silurian (Ludlovian) Konservat-Lagerstätten. Unpublished , University of Rochester, 190 p.Google Scholar
LoDuca, S. T. 1990b. Medusaegraptus mirabilis Ruedemann as a noncalcified dasyclad alga. Journal of Paleontology, 64:469474.Google Scholar
LoDuca, S. T. 1995. Thallophytio-alga-dominated biotas from the Silurian Lockport Group of New York and Ontario, Northeastern Geology and Environmental Science. 17:371382.Google Scholar
LoDuca, S. T., and Brett, C. E. 1997. The Medusaegraptus epibole and Lower Ludlovian Konservat-Lagerstätten of eastern North America, p. 369406. In Brett, C. E. and Baird, G. C. (eds.), Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications, Columbia University Press, New York.Google Scholar
LoDuca, S. T., and Pratt, L. M. 1996. Plant or animal? Distinguishing fossil dendroid graptolites and thallophytic algae based on stable carbon isotopic composition. Geological Society of America Abstracts with Programs, 28(3):76Google Scholar
Nitecki, M. H. 1976. Ordovician Batophoreae (Dasycladales) from Michigan. Fieldiana (Geology), 35:2940.Google Scholar
Pascher, A. 1931. Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstamme in die Stämme des Pflanzenreiches. Botanisches Centralblatt, Beiheft, 48:317332.Google Scholar
Pia, J. 1920. Die Siphoneae Verticillatae vom Karbon bis zur Kreide. Abhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, 11, 263 p.Google Scholar
Pia, J. 1927. Abteilung: Thallophyta, p. 31136. In Hirmer, M. (ed.), Handbuch der Paläobotanik, München.Google Scholar
Pia, J. 1928. Plantae fossiles. Neue Arbeiten über fossile Kalkalgen aus den Familien der Dasycladaceae und Codiaceae. Neues Jarbuch für Geologie und Paläontologie Abhandlungen, 3:227240.Google Scholar
Ruedemann, R. 1909. Some marine algae from the Trenton Limestone of New York. New York State Museum Annual Report 62 for 1908, p. 194210Google Scholar
Ruedemann, R. 1925. Some Silurian (Ontarian) faunas of New York. New York State Museum Bulletin 265, 84 p.Google Scholar
Ruedemann, R. 1947. Graptolites of North America. Geological Society of America Memoir, 19, 651 p.Google Scholar
Spencer, J. 1884. Niagaran fossils. Transactions of the Academy of Science of St. Louis, 4:555610.Google Scholar
Størmer, L. 1970. Arthropods from the Lower Devonian (lower Emsian) of Alken an der Mosel, Germany; Part 1, Arachnida. Senckenbergiana Lethaea, 51:335369.Google Scholar
Whitfield, R. P. 1894. On new forms of marine algae from the Trenton Limestone with observations of Buthograptus laxus Hall. American Museum of Natural History Bulletin, 6:351358.Google Scholar
Wilson, A. 1948. Miscellaneous classes of fossils, Ottawa Formation, Ottawa-St. Lawrence Valley. Canada Department of Mines and Resources, Geological Survey Bulletin No. 11, 166 p.Google Scholar
Wray, J. 1977. Calcareous Algae. Elsevier, New York, 185 p.Google Scholar