Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T19:56:16.353Z Has data issue: false hasContentIssue false

Glossifungites gingrasi n. isp., a probable subaqueous insect domicile from the Cretaceous Ferron Sandstone, Utah

Published online by Cambridge University Press:  25 January 2021

M. Ryan King
Affiliation:
Natural and Environmental Sciences, Western Colorado University, 1 Western Way, Gunnison, CO, 81231, USA
Andrew D. La Croix
Affiliation:
Earth Sciences, School of Science, University of Waikato, Hamilton 3200, New Zealand
Terry A. Gates
Affiliation:
Department of Biological Sciences, 100 Brooks Ave, North Carolina State University, Raleigh, NC, 27695, USA Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, USA
Paul B. Anderson
Affiliation:
Consulting geologist, 187 R Street, Salt Lake City, Utah, 84103
Lindsay E. Zanno
Affiliation:
Department of Biological Sciences, 100 Brooks Ave, North Carolina State University, Raleigh, NC, 27695, USA Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, USA

Abstract

A new ichnospecies, Glossifungites gingrasi n. isp., is described from multiple locations in basal sand-filled coastal plain distributary channels of the Turonian (Upper Cretaceous) Ferron Sandstone (central Utah). Glossifungites gingrasi n. isp. is attributed to the ichnogenus Glossifungites based on the presence of scratch imprints, passive fill, and a tongue-shaped structure, yet the new ichnospecies is distinct because it displays transverse bioglyphs that run perpendicular to the planiform structure, which contrasts to the axis parallel bioglyphs present in the ichnospecies G. saxicava. The transverse arrangement of ornamentation exhibited by G. gingrasi n. isp. is observed in modern subaqueous insect burrows produced by mayfly and chironomid larvae, and constitutes a way to differentiate insect-generated burrows from structures produced by crustaceans that are known to create other Glossifungites ichnospecies. Differentiating insect- from crustacean-generated burrows is significant because it provides a way to distinguish bioturbation by marine-recruited fauna from that produced by freshwater fauna in the rock record, making G. gingrasi n. isp. a valuable ichnological tool for paleoenvironmental and stratigraphic interpretation. While G. gingrasi n. isp. may represent a burrow created by a variety of filter-feeding subaqueous insects, the large size of G. gingrasi n. isp. in the Ferron Sandstone suggests that the largest specimens are probable mayfly burrows and supports the assertion that burrowing mayflies (e.g., Polymitarcyidae and Ephemeridae) adapted to domicile filter-feeding during or prior to the Turonian.

UUID: http://zoobank.org/a033b22f-bf09-481a-975e-3a1b096154cc

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O., 1935, Vorzeitliche Lebensspuren: Jena, Gustav Fischer, 644 p.Google Scholar
Anderson, P.B., and Ryer, T.A., 2004, Regional stratigraphy of the Ferron Sandstone, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial- Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 211224.Google Scholar
Anderson, P.B., McClure, K.P., Chidsey, T.C., Ryer, T.A., and Morris, T.H., 2003, Interpreted Regional Photomosaics and Cross Section, Cretaceous Ferron Sandstone East-Central Utah: Utah Geological Survey Open File Report 412, 29 p.Google Scholar
Belaústegui, Z., Ekdale, A.A., Domènech, R., and Martinell, J., 2016a, Paleobiology of firmground burrowers and cryptobionts at a Miocene omission surface, Alcoi, SE Spain: Journal of Paleontology, v. 90, p. 721733.CrossRefGoogle Scholar
Belaústegui, Z., Muñiz, F., Mángano, M.G., Buatois, L.A., Domènech, R., and Martinell, J., 2016b, Lepeichnus giberti igen. nov. isp. nov. from the upper Miocene of Lepe (Huelva, SW Spain): evidence for its origin and development with proposal of a new concept, ichnogeny: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 452, p. 8089.CrossRefGoogle Scholar
Bhattacharya, J.P., and Davies, R.K., 2004, Sedimentology and structure of growth faults at the base of the Ferron Sandstone Member along Muddy Creek, Utah, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 279304.Google Scholar
Bhattacharya, J.P., and MacEachern, J.A., 2009, Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America: Journal of Sedimentary Research, v. 79, p. 184209.CrossRefGoogle Scholar
Bolliger, T., 1999, Trace fossils and trackways in the Upper Freshwater Molasse of Central and Eastern Switzerland: Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen, p. 519536.CrossRefGoogle Scholar
Bromley, R.G., 1975, Comparative analysis of fossil and recent echinoid bioerosion: Palaeontology, v. 18, p. 725739.Google Scholar
Bromley, R.G., 1996, Trace Fossils: Biology, Taxonomy and Applications: London, Chapman and Hall, 378 p.CrossRefGoogle Scholar
Bromley, R.G., and Hanken, N.-M., 1991, The growth vector in trace fossils: examples from the lower Cambrian of Norway: Ichnos, v. 1, p. 261276.CrossRefGoogle Scholar
Bromley, R.G., Pemberton, S.G., and Rahmani, R.A., 1984, A Cretaceous woodground: the Teredolites ichnofacies: Journal of Paleontology, v. 58, p. 488498.Google Scholar
Buatois, L.A., 1995, A new ichnospecies of Fuersichnus from the Cretaceous of Antarctica and its paleoecologic and stratigraphic implications: Ichnos, v. 3, p. 259263.CrossRefGoogle Scholar
Buatois, L.A., and Mángano, M.G., 2004, Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions, in McIlroy, D., ed., The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis: Geological Society, London, Special Publications, v. 228, p. 311333.Google Scholar
Cañedo-Argüelles, M., Kefford, B.J., Piscart, C., Prat, N., Schäfer, R.B., and Schulz, C.-J., 2013, Salinisation of rivers: an urgent ecological issue: Environmental Pollution, v. 173, p. 157167.CrossRefGoogle ScholarPubMed
Chacón, M.M., Segnini, S., and Briceño, D., 2016, Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes: Revista de Biología Tropical, v. 64, p. 117130.CrossRefGoogle Scholar
Chadwick, M.A., Hunter, H., Feminella, J.W., and Henry, R.P., 2002, Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water: Florida Entomologist, v. 85, p. 650651.CrossRefGoogle Scholar
Chamberlain, C.K., 1975, Recent lebensspuren in nonmarine aquatic environments, in Frey, R.W., ed., The Study of Trace Fossils: A Synthesis of Principles, Problems, and Procedures in Ichnology: Berlin, Heidelberg, Springer, p. 431458.CrossRefGoogle Scholar
Charbonneau, P., and Hare, L., 1998, Burrowing behavior and biogenic structures of mud-dwelling insects: Journal of the North American Benthological Society, v. 17, p. 239249.CrossRefGoogle Scholar
Corbeanu, R.M., Wizevich, M.C., Bhattacharya, J.P., Zeng, X., and McMechan, G.A., 2004, Three-dimensional architecture of ancient lower delta-plain point bars using Ground-Penetrating Radar, Cretaceous Ferron Sandstone, Utah, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 427450.Google Scholar
De, C., 2002, Continental mayfly burrows within relict-ground in inter-tidal beach profile of Bay of Bengal coast: a new ichnological evidence of Holocene marine transgression: Current Science, v. 83, p. 6467.Google Scholar
Edmunds, G.F., and McCafferty, W.P., 1996, New field observations on burrowing in Ephemeroptera from around the world: Entomological News, v. 107, p. 6876.Google Scholar
Ekdale, A.A., and Gibert, J.M. de, 2010, Paleoethologic significance of bioglyphs: fingerprints of the subterraneans: Palaios, v. 25, p. 540545.CrossRefGoogle Scholar
Extence, C.A., Chadd, R.P., England, J., Dunbar, M.J., Wood, P.J., and Taylor, E.D., 2013, The assessment of fine sediment accumulation in rivers using macro-invertebrate community response: River Research and Applications, v. 29, p. 1755.CrossRefGoogle Scholar
Fürsich, F.T., 1974, Ichnogenus Rhizocorallium: Paläontologische Zeitschrift, v. 48, p. 1628.CrossRefGoogle Scholar
Fürsich, F.T., and Mayr, H., 1981, Non-marine Rhizocorallium (trace fossil) from the Upper Freshwater Molasse (Upper Miocene) of southern Germany: Neues Jahrbuch Für Geologie Und Paläontologie, Monatshefte, v. 6, p. 321333.CrossRefGoogle Scholar
Gani, M.R., Bhattacharya, J.P., and MacEachern, J.A., 2007, Using ichnology to determine the relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, U.S.A., in MacEachern, J.A., Bann, K.L., Gingras, M.K., and Pemberton, S.G., eds., Applied Ichnology: SEPM (Society for Sedimentary Geology) Short Course Notes No. 52, p. 209226.Google Scholar
Gardner, M.H., Barton, M.D., Tyler, N., and Fisher, R.S., 1992, Architecture and permeability structure of fluvial-deltaic sandstones, Ferron Sandstone, east-central Utah in Flores, R.M., ed., Mesozoic of the Western Interior: SEPM (Society for Sedimentary Geology) Rocky Mountain Section Field Guide, p. 519.Google Scholar
Gardner, M.H., Cross, T.A., and Levorsen, M., 2004, Stacking patterns, sediment volume partitioning, and facies differentiation in shallow-marine and coastal-plain strata of the Cretaceous Ferron Sandstone, Utah, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 95124.Google Scholar
Garrison, J.R. Jr., and van den Bergh, T.C.V., 2004, High-resolution depositional sequence stratigraphy of the Upper Ferron Sandstone Last Chance Delta: an application of coal-zone stratigraphy, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 125–192.Google Scholar
Genise, J.F., 2017, Ichnoentomology: Insect Traces in Soils and Paleosols: Topics in Geobiology No. 37, Cham, Switzerland, Springer, 723 p.CrossRefGoogle Scholar
Getty, P.R., and Bush, A.M., 2017, On the ichnotaxonomic status of Haplotichnus indianensis (Miller, 1889): Ichnos, v. 24, p. 234238.CrossRefGoogle Scholar
Haidekker, A., and Hering, D., 2008, Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study: Aquatic Ecology, v. 42, p. 463481.CrossRefGoogle Scholar
Hasiotis, S.T., 2004, Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses: Sedimentary Geology, v. 167, p. 177268.CrossRefGoogle Scholar
Hauck, T.E., Dashtgard, S.E., Pemberton, S.G., and Gingras, M.K., 2009, Brackish-water ichnological trends in a microtidal barrier island-embayment system, Kouchibouguac National Park, New Brunswick, Canada: Palaios, v. 24, p. 478496.CrossRefGoogle Scholar
Illies, J., 1968, Ephemeroptera (Eintagsfliegen), in Helmcke, J.G., Starck, D., and Wermuth, H., eds., Handbuch Der Zoologie: Berlin, de Gruyter, v. 4, no. 2, p. 163.Google Scholar
King, M.R., and Anderson, P.B., 2013, Over-thickened nearshore sand body near its landward pinchout and the relation to transgression, Ferron Sandstone, central Utah, in Morris, T.H., and Ressetar, R., eds., The San Rafael Swell and Henry Mountains Basin: Geologic Centerpiece of Utah: Utah Geological Association Publication No. 42, p. 319340.Google Scholar
King, M.R., Botterill, S.E., Gingras, M.K., and Pemberton, S.G., 2020a, Rhizocorallium and turtle tracks: a late Cretaceous proximal distributary channel trace-fossil assemblage, central Utah: Ichnos, v. 27, p. 406427. https://doi.org/10.1080/10420940.2020.1763337.CrossRefGoogle Scholar
King, M.R., Botterill, S.E., Gingras, M.K., and MacEachern, J.A., 2020b, Freshwater to low salinity expression of Cretaceous Glossifungites-demarcated autogenic stratigraphic surfaces, central Utah: Ichnos. https://doi.org/10.1080/10420940.2020.1843456.CrossRefGoogle Scholar
Knaust, D., 2013, The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution: Earth-Science Reviews, v. 126, p. 147.CrossRefGoogle Scholar
Krasnenkov, R.V., 1966, Nori lichinok pliocenovikh i sovremiennikh podenok iz voronezhskoy oblasti, in Hecker, R.F., ed., Organism i Sreda v Geologicheskom Proshlom: Moscow, Nauka, p. 214221.Google Scholar
Kureck, A., 1996, Eintagsfliegen am Rhein: zur biologie von Ephoron virgo (Olivier, 1791): Decheniana-Beihefte, v. 35, p. 1724.Google Scholar
La Croix, A.D., Dashtgard, S.E., Gingras, M.K., Hauck, T.E., and MacEachern, J.A., 2015, Bioturbation trends across the freshwater to brackish-water transition in rivers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 440, p. 6677.CrossRefGoogle Scholar
Lange, J.-M., and Suhr, P., 1996, Erste funde von lebensspuren in den jungtertiären Elbeschottern von Ottendorf-Okrilla: Zeitschrift der Deutschen Geologischen Gesellschaft, p. 475479.Google Scholar
Lockley, M.G., 1994, Dinosaur ontogeny and population structure: interpretations and speculation based on footprints, in Carpenter, K., Hirsch, K., and Horner, J., eds., Dinosaur Eggs and Babies: New York, Cambridge University Press, p. 347365.Google Scholar
Łomnicki, A.M., 1886, Słodkowodny utwór trzeciorzędny na Podolu galicyjskiém: Akademii Umiejętności w Krakowie, Sprawozdanie Komisyi Fizyjograficznej, v. 20, p. 48119.Google Scholar
Lucas, S.G., and Harris, J.D., 2020, The “Plastotype Problem” in ichnological taxonomy: Ichnos, v. 27, p. 107110.CrossRefGoogle Scholar
Lupton, C.T., 1916, Geology and coal resources of Castle Valley in Carbon, Emery, and Sevier counties, Utah: U.S. Geological Survey Bulletin, v. 628, p. 188.Google Scholar
MacEachern, J.A., Bann, K.L., Pemberton, S.G., and Gingras, M.K., 2007, The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record, in MacEachern, J.A., Bann, K.L., Gingras, M.K., and Pemberton, S.G., eds., Applied Ichnology: SEPM (Society for Sedimentary Geology) Short Course Notes No. 52, p. 2764.CrossRefGoogle Scholar
Matsukawa, M., Lockley, M.G., and Hunt, A.P., 1999, Three age groups of ornithopods inferred from footprints in the mid-Cretaceous Dakota Group, eastern Colorado, North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 147, p. 3951.CrossRefGoogle Scholar
McCafferty, W.P., 1990, Chapter 2. Ephemeroptera, in Grimaldi, D., ed., Insects from the Santana Formation, Lower Cretaceous, of Brazil: Bulletin of the American Museum of Natural History No. 195, p. 2050.Google Scholar
Melchor, R.N., Genise, J.F., Buatois, L.A., and Umazano, A.M., 2012, Chapter 12—Fluvial environments, in Knaust, D., and Bromley, R.G., eds., Trace Fossils as Indicators of Sedimentary Environments: Developments in Sedimentology v. 64, p. 329378.CrossRefGoogle Scholar
Miller, D.B., Bartlett, S., Sartori, M., Breinholt, J.W., and Ogden, T.H., 2018, Anchored phylogenomics of burrowing mayflies (Ephemeroptera) and the evolution of tusks: Systematic Entomology, v. 43, p. 692701.CrossRefGoogle Scholar
Moiola, R.J., Welton, J.E., Wagner, J.B., Fearn, L.B., Farrell, M.E., Enrico, R.J., and Echols, R.J., 2004, Integrated analysis of the Upper Ferron Deltaic Complex, Southern Castle Valley, Utah, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 7991.Google Scholar
Montagna, M., Tong, K.J., Magoga, G., Strada, L., Tintori, A., Ho, S.Y.W., and Lo, N., 2019, Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction: Proceedings of the Royal Society B: Biological Sciences, v. 286: 20191854, p. 19. https://doi.org/10.1098/rspb.2019.1854.Google Scholar
Olsen, P.E., Smith, J.B., and McDonald, N.G., 1998, Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus, and Grallator (Early Jurassic, Hartford and Deerfield basins, Connecticut and Massachusetts, U.S.A.): Journal of Vertebrate Paleontology, v. 18, p. 586601.CrossRefGoogle Scholar
Réaumur, R.-A.F. de, 1742, Des mouches appelée Éphémères: Memoires Pour Servir a L'histoire des Insectes: Paris, Imprimerie Royale, v. 6, p. 457522.Google Scholar
Richards, B.H., and Bhattacharya, J.P., 2018, Stratigraphy of the fluvial-to-marine transition zone associated with a forced-regressive compound incised-valley system in the Turonian Ferron Notom Delta, Utah, U.S.A.: Journal of Sedimentary Research, v. 88, p. 311326.CrossRefGoogle Scholar
Rindsberg, A.K., and Kopaska-Merkel, D.C., 2005, Treptichnus and Arenicolites from the Steven C. Minkin Paleozoic Footprint Site (Langsettian, Alabama, USA), in Buta, R.J., Rindsberg, A.K., and Kopaska-Merkel, D.C., eds., Pennsylvanian Footprints in the Black Warrior Basin of Alabama: Alabama Paleontological Society Monograph No. 1, p. 121141.Google Scholar
Ryer, T.A., 1981, Deltaic coals of Ferron Sandstone Member of Mancos Shale: predictive model for Cretaceous coal-bearing strata of Western Interior: AAPG Bulletin, v. 65, p. 24402440.Google Scholar
Ryer, T.A., 2004, Previous studies of the Ferron Sandstone, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 338.Google Scholar
Ryer, T.A., and Anderson, P.B., 2004, Facies of the Ferron Sandstone, East-Central Utah, in Chidsey, T.C. Jr., Adams, R.D., and Morris, T.H., eds., Regional to Wellbore Analog for Fluvial-Deltaic Reservoir Modeling: The Ferron Sandstone of Utah: American Association of Petroleum Geologists Studies in Geology No. 50, p. 5978.Google Scholar
Ryer, T.A., Phillips, R.E., Bohor, B.F., and Pollastro, R.M., 1980, Use of altered volcanic ash falls in stratigraphic studies of coal-bearing sequences: an example from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah: GSA Bulletin, v. 91, p. 579586.Google Scholar
Savrda, C.E., 2019, Bioerosion of a modern bedrock stream bed by insect larvae (Conecuh River, Alabama): implications for ichnotaxonomy, continental ichnofacies, and biogeomorphology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 513, p. 313.CrossRefGoogle Scholar
Schmid, E.E., 1876, Der Muschelkalk des östlichen Thüringen: Jena, Fromann, 20 p.Google Scholar
Scott, D.C., Berner, L., and Hirsch, A., 1959, The nymph of the mayfly Genus Tortopus (Ephemeroptera: Polymitarcidae): Annals of the Entomological Society of America, v. 52, p. 205213.CrossRefGoogle Scholar
Seilacher, A., 1967, Bathymetry of trace fossils: Marine Geology, v. 5, p. 413428.CrossRefGoogle Scholar
Seilacher, A., 2007, Trace Fossil Analysis: Heidelberg, Springer-Verlag, 226 p.Google Scholar
Sinitshenkova, N.D., 2000, New Jersey amber mayflies: the first North American Mesozoic members of the order (Insecta; Ephemeroptera), in Grimaldi, D., ed., Studies on Fossils in Amber with Particular Reference to the Cretaceous of New Jersey: Leiden, Backhuys Publishers, p. 111125.Google Scholar
Sinitshenkova, N.D., and Vassilenko, D.V., 2012, The latest record of mayflies of the family Protereismatidae sellards (Ephemerida = Ephemeroptera) and a new species of the family Misthodotidae in the upper Permian of Europe: Paleontological Journal, v. 46, p. 6165.CrossRefGoogle Scholar
Sinitshenkova, N.D., Marchal-Papier, F., Grauvogel-Stamm, L., and Gall, J.-C., 2005, The Ephemeridea (Insecta) from the Grès à Voltzia (early Middle Triassic) of the Vosges (NE France): Paläontologische Zeitschrift, v. 79, p. 377397.CrossRefGoogle Scholar
Swammerdam, J., 1737, Biblia Natuare, Sive Historia Insectorum: Leydae, Isaak Severinus, 362 p.Google Scholar
Uchman, A., Bubniak, I., and Bubniak, A., 2000, The Glossifungites Ichnofacies in the area of its nomenclatural archetype, Lviv, Ukraine: Ichnos, v. 7, p. 183193.CrossRefGoogle Scholar
Uchman, A., Mikuláš, R., and Stachacz, M., 2017, Mayfly burrows in firmground of recent rivers from the Czech Republic and Poland, with some comments on Ephemeropteran burrows in general: Ichnos, v. 24, p. 191203.CrossRefGoogle Scholar
Zedková, B., Rádková, V., Bojková, J., Soldán, T., and Zahrádková, S., 2015, Mayflies (Ephemeroptera) as indicators of environmental changes in the past five decades: a case study from the Morava and Odra River Basins (Czech Republic): Aquatic Conservation: Marine and Freshwater Ecosystems, v. 25, p. 622638.Google Scholar
Zenker, J.C., 1836, Historisch-Topographisches Taschenbuch von Jena Und Seiner Umgebung: Jena, Friedrich Frommann, 338 p.Google Scholar