Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T17:10:16.489Z Has data issue: false hasContentIssue false

Fossil actinomycete in Eocene-Oligocene Dominican amber

Published online by Cambridge University Press:  20 May 2016

Benjamin M. Waggoner*
Affiliation:
Museum of Paleontology, Department of Integrative Biology, University of California, Berkeley 94720

Extract

Actinomycetes are Gram-positive prokaryotes that tend to form branching and fragmenting filaments, which in some groups form a sizable mycelium. They make up a large and important part of modern terrestrial microfloras but are not known extensively as fossils, although they have a long fossil history. Actinomycete-like fossils appear several times in the Precambrian: in the middle Precambrian Gowganda Formation of Ontario (Jackson, 1967), in the 2.0 Ga Gunflint Chert of Ontario (Lanier, 1987), and possibly in a lichen-like symbiosis in the 2.8 Ga Witwatersrand rocks of South Africa (Hallbauer and Van Warmelo, 1974), among others. Direct fossil evidence of actinomycetes is very rare in the Phanerozoic, and some “fossil” actinomycetes may be later contaminants (Knoll, 1977; Smoot and Taylor, 1983). Hyphae identified as actinomycetes are known from rod-like bodies identified as nematodes inside a decaying scorpion from the lower Carboniferous of Scotland (Stoermer, 1964), and from the interior of fern phloem cells from the Pennsylvanian (Smoot and Taylor, 1983). Unmineralized Actinomyces-like cells are known from calcite in bituminous lake-bed sediments from the early Cretaceous of Nevada (Bradley, 1963), and similar, poorly preserved fossils of a form called Actinomycites have been reported from the Jurassic of Scotland (Ellis, 1915). Actinorhizal nodules, formed by actinomycetes symbiotic with plant roots, have been described from the late Pleistocene (Baker and Miller, 1980).

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D., and Miller, N. G. 1980. Ultrastructural evidence for the existence of actinorhizal symbioses in the late Pleistocene. Canadian Journal of Botany, 58:16121620.Google Scholar
Baroni Urbani, C., and Saunders, J. B. 1980. The fauna of the Dominican Republic amber: the present status of knowledge. Proceedings of the 9th Caribbean Geological Conference, August 1980, Santa Domingo:213233.Google Scholar
Blunck, G. 1929. Bakterieneinschlüsse im Bernstein. Centralblatt für Mineralogie, Geologie und Paläontologie, Abteilung B, 1929(11):554555.Google Scholar
Bradley, W. H. 1963. Unmineralized fossil bacteria. Science, 141:919921.Google Scholar
Buchanan, R. E. 1917. Studies on the nomenclature and classification of the bacteria. III. The families of the Eubacteriales. Journal of Bacteriology, 2:347350.Google Scholar
Buchanan, R. E., and Gibbons, N. E. (eds.). 1975. Bergey's Manual of Determinative Bacteriology. 8th edition. Williams and Wilkins Co., Baltimore, 1,268 p.Google Scholar
Castellani, A., and Chalmers, A. J. 1919. Manual of Tropical Medicine, 2nd edition. William Woods & Company, New York, 2,436 p.Google Scholar
Cooper, K. W. 1964. The first fossil tardigrade: Beorn leggi Cooper, from Cretaceous amber. Psyche, 71:4148.CrossRefGoogle Scholar
Cross, T., and Goodfellow, M. 1973. Taxonomy and classification of the actinomycetes, p. 11112. In Sykes, G. and Skinner, F. A. (eds.), Actinomycetes: Characteristics and Practical Importance. Academic Press, London, New York.Google Scholar
Cross, T., Rowbotham, T. J., Mishushtin, E. N., Tepper, E. Z., Antoine-Portaels, F., Schaal, K. P., and Beckenbach, H. 1976. The ecology of nocardioform actinomycetes, p. 337371. In Goodfellow, M., Brownell, G. H., and Serrano, J. A. (eds.), The Biology of the Nocardia. Academic Press, London, New York, San Francisco.Google Scholar
Cunningham, A., Gay, I. D., Oehlschlager, A. C., and Langenheim, J. H. 1983. 13C NMR and IR analyses of structure, aging and botanical origin of Dominican and Mexican ambers. Phytochemistry, 22:965968.Google Scholar
Eberle, W., Hirdes, W., Muff, R., and Pelaez, M. 1980. The geology of the Cordillera Septentrional. Proceedings of the 9th Caribbean Geology Conference, August 1990, Santa Domingo:619632.Google Scholar
Ellis, D. 1915. Fossil micro-organisms from the Jurassic and Cretaceous rocks of Great Britain. Proceedings of the Royal Society of Edinburgh, 35:110133.Google Scholar
Hallbauer, D. K., and Van Warmelo, K. T. 1974. Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambrian Research, 1:199212.Google Scholar
Hunter-Cevera, J. C., and Eveleigh, D. E. 1990. Actinomycetes, p. 3348. In Dindal, D. L. (ed.), Soil Biology Guide. John Wiley and Sons, New York.Google Scholar
Jackson, T. A. 1967. Fossil actinomycetes in middle Precambrian glacial varves. Science, 155:10031005.CrossRefGoogle ScholarPubMed
Katinas, V. 1983. Baltijos Gintaras. Mosklas, Vilnius, 112 p.Google Scholar
Kendrick, W. B., and Parkinson, D. 1990. Soil fungi, p. 4965. In Dindal, D. L. (ed.), Soil Biology Guide. John Wiley and Sons, New York.Google Scholar
Knoll, A. H. 1977. Paleomicrobiology, p. 929. In Laskin, A. I. and Lechevalier, H. A. (eds.), CRC Handbook of Microbiology. Volume I: Bacteria, 2nd edition. CRC Press, Cleveland.Google Scholar
Lacey, J. 1973. Actinomycetes in soils, composts, and fodders, p. 231251. In Sykes, G. and Skinner, F. A. (eds.), Actinomycetales: Characteristics and Practical Importance. Academic Press, London, New York.Google Scholar
Lambert, J. B., Frye, J. S., and Poinar, G. O. 1985. Amber from the Dominican Republic: analysis by nuclear magnetic resonance spectroscopy. Archaeometry, 27:4351.Google Scholar
Lanier, W. P. 1987. Actinomycetes-like microfossils from the 2.0 Ga Gunflint Formation, Canada. Geological Society of America, Abstracts with Programs, 19(7):739.Google Scholar
Larsson, S. G. 1978. Baltic amber—a palaeobiological study. Entomonograph 1, Scandinavian Science Press, Klampenborg, Denmark, 192 p.Google Scholar
Lechevalier, M. P. 1976. The taxonomy of the genus Nocardia: some light at the end of the tunnel?, p. 138. In Goodfellow, M., Brownell, G. H., and Serrano, J. A. (eds.), The Biology of the Nocardia. Academic Press, London, New York, San Francisco.Google Scholar
Orchard, V. A. 1981. The ecology of Nocardia and related taxa, p. 167180. In Schall, K. P. and Pulverer, G. (eds.), Actinomycetes: Proceedings of the Fourth International Symposium of Actinomycete Biology. Fischer-Verlag, Stuttgart, New York.Google Scholar
Poinar, G. O. 1991. Hymenaea protera sp. n. (Leguminosae, Caesalpinoideae) from Dominican amber has African affinities. Experientia, 47:10751082.Google Scholar
Poinar, G. O. 1992. Life in Amber. Stanford University Press, Stanford, California, 300 p.CrossRefGoogle Scholar
Sherwood, M. A. 1981. Convergent evolution in discomycetes from bark and wood. Botanical Journal of the Linnaean Society (London), 82:1534.Google Scholar
Smoot, E. L., and Taylor, T. N. 1983. Filamentous microorganisms from the Carboniferous of North America. Canadian Journal of Botany, 61:22512259.CrossRefGoogle Scholar
Stoermer, L. 1964. Anatomy of decay as preserved in shale. Natural History, 73(10):2024.Google Scholar
Stubblefield, S. P., Miller, C. E., and Taylor, T. N. 1984. Studies of fossil fungi. III: a Miocene age fungus from Dominican Republic amber. Ohio Journal of Science, 84:78.Google Scholar
Thomas, G. M., and Poinar, G. O. 1988. A fossil Aspergillus from Eocene Dominican amber. Journal of Paleontology, 62:141143.Google Scholar
Waggoner, B. M. In press. The first fossil cyphoderiid testate amoeba, in Dominican Republic amber (Eocene-Oligocene). PaleoBios.Google Scholar
Waggoner, B. M., and Poinar, G. O. 1992. A fossil myxomycete from Eocene-Oligocene amber of the Dominican Republic. Journal of Protozoology, 39:639642.Google Scholar
Waksman, S. A. 1967. The Actinomycetes. Ronald Press, New York, 280 p.Google Scholar