Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:00:55.430Z Has data issue: false hasContentIssue false

Flexible crinoids from the Upper Ordovician Maquoketa Formation of the northern midcontinent and the evolution of early flexible crinoids

Published online by Cambridge University Press:  14 July 2015

James C. Brower*
Affiliation:
Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244-1070

Abstract

Three flexible crinoids occur in the Upper Ordovician Maquoketa Formation of Illinois, Iowa, and Minnesota: Protaxocrinus girvanensis Ramsbottom, 1961, Clidochirus anebos new species, and Proanisocrinus oswegoensis (Miller and Gurley, 1894). Protaxocrinus girvanensis is also found in the Upper Ordovician of Scotland which indicates that the ocean was narrow enough to allow at least one crinoid species to cross the barrier. The Upper Ordovician of North America and Scotland also share many common crinoid genera. Both phenetic and cladistic methods result in similar phylogenies of flexible crinoids. Protaxocrinus was derived from a cupulocrinid ancestor during the Middle Ordovician. Clidochirus evolved from Protaxocrinus or its ancestral stock prior to the Richmondian of the Late Ordovician. The Richmondian Proanisocrinus and later anisocrinids are most closely related to Clidochirus or its immediate predecessor. Thus, three major lineages of flexible crinoids, Protaxocrinus (taxocrinid group), Clidochirus (icthyocrinid), and Proanisocrinus (anisocrinids and homalocrinids), appeared during the Ordovician. Despite their rarity during the Ordovician, all three flexible lineages survived the Latest Ordovician extinction, whereas their more abundant and successful cupulocrinid ancestors were eliminated.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelin, N. P. 1878. Iconographia crinoideorum in stratis Sueciae Siluricis fossilium. Samson & Wallin, Holmiae, 62 p.Google Scholar
Ausich, W. I. 1984. The genus Clidochirus from the Early Silurian of Ohio (Crinoidea: Llandoverian). Journal of Paleontology, 58:13411346.Google Scholar
Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.CrossRefGoogle Scholar
Ausich, W. I. 1998a. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998b. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. The University of Kansas Paleontological Contributions, New Series, Number 9, 36 p.Google Scholar
Bather, F. A. 1900. Chapter XI: The Crinoidea, p. 94204. In Lankester, E. R. (ed.), A Treatise on Zoology, Pt. III, The Echinoderma. Adam & Charles Black, London.Google Scholar
Bergström, S. M. 1990. Relations between conodont provincialism and the changing palaeogeography during the Early Palaeozoic, p. 105121. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12 p.Google Scholar
Bolton, T. E. 1970. Echinodermata from the Ordovician (Pleurocystites, Cremacrinus) and Silurian (Hemicystites, Protaxocrinus, Macnamaratylus) of Lake Timiskaming Region, Ontario and Quebec. Geological Survey of Canada, Bulletin 187:5966.Google Scholar
Bolton, T. E., and Copeland., M. J. 1972. Paleozoic Formations and Silurian biostratigraphy, Lake Timiskaming Region, Ontario and Quebec. Geological Survey of Canada, Paper 72-15, 48 p.CrossRefGoogle Scholar
Bouska, J. 1956. On the occurrence of the genus Protaxocrinus Springer (Crinoidea) in the Silurian of Bohemia (In Czech). Ceskoslovenska Akademie Ved, Ustredni Ustav Geologicky u Academii, Rospravy Ustredniho Ustavu Geologickeho, 22:323333.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7:261499.Google Scholar
Brower, J. C. 1992. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.CrossRefGoogle Scholar
Brower, J. C. 1995. Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 69:939960.CrossRefGoogle Scholar
Brower, J. C. 1996. Carabocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 70:614631.CrossRefGoogle Scholar
Brower, J. C. 1997. Homocrinid crinoids from the Upper Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 71:442458.CrossRefGoogle Scholar
Brower, J. C., and Strimple., H. L. 1983. Ordovician calceocrinids from northern Iowa and southern Minnesota. Journal of Paleontology, 57:12611281.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, Part 1. Palaeontographical Society, London, Monograph, 138(568):168.Google Scholar
Donovan, S. K., Doyle, E. N., and Harper., D. A. T. 1992. A flexible crinoid from the Llandovery (Silurian) of western Ireland. Journal of Paleontology, 66:262266.CrossRefGoogle Scholar
Donovan, S. K., Paul, C. R. C., and Lewis., D. N. 1996. Chapter 13. Echinoderms, p. 202267. In Harper, D. A. T. and Owen, A. W. (eds.), Fossils of the Upper Ordovician, Palaeontological Association (London), Field Guides to Fossils, Number 7.Google Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian) in southern Ontario, Canada. Royal Ontario Museum, Life Sciences Contributions 137, 82 p.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs, Supplement to Paleobiology 25(2), 1115.Google Scholar
Frest, T. J., and Strimple., H. L. 1978. The flexible crinoid Anisocrinus (Ordovician-Silurian) in North America. Journal of Paleontology, 52:683696.Google Scholar
Holterhoff, P. E., and Baumiller., T. K. 1996. Phylogeny of the protoarticulates (ampelocrinids + basal articulates): implications for the Permo-Triassic extinction and re-radiation of the Crinoidea. Paleontological Society Special Publication, 8:176.CrossRefGoogle Scholar
Jell, P. A. 1999. Silurian and Devonian crinoids from central Victoria. Memoirs of the Queensland Museum, Volume 43(1):1114.Google Scholar
Kolata, D. R., Brower, J. C., and Frest., T. J. 1987. Upper Mississippi Valley Champlainian and Cincinnatian echinoderms. Minnesota Geological Survey, Report of Investigations, 35:179181.Google Scholar
Lane, N. G. 1978. Evolution-Cladida-Cyathocrinina and Dendrocrinina, p. T294T298. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Levorson, C. O., Gerk, A. J., Sloan, R. E., and Bisagno., L. A. 1987. General section of the Middle and Late Ordovician strata of northeastern Iowa. Minnesota Geological Survey, Report of Investigations, 35:2539.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea or lily-shaped animals, with observation on the genera Asteria, Euryale, Comatula, and Marsupites . Bryan & Company, Bristol, 150 p.Google Scholar
Miller, S. A., and Gurley, W. F. E. 1894. New genera and species of Echinodermata. Illinois State Museum of Natural History, Bulletin, 5:153.Google Scholar
Moore, R. C. 1978. Subclass Flexibilia Zittel, 1895, p. T765T812. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Moore, R. C., and Laudon., L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America, Special Paper 46:1167.Google Scholar
Moore, R. C., Lane, N. G., and Strimple., H. L. 1978. Order Cladida Moore & Laudon, 1943, p. T758T759. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Owen, A. W. 1996. Chapter 3. Tectonic and environmental setting, p. 1822. In Harper, D. A. T. and Owen, A. W. (eds.), Fossils of the Upper Ordovician. Palaeontological Association (London), Field Guides to Fossils, Number 7.Google Scholar
Ramsbottom, W. H. C. 1961. A monograph on British Ordovician Crinoidea. Palaeontographical Society, London, Monograph, 114(492):137Google Scholar
Roemer, C. F. 1854-1855. Erste Periode, Kohlen-Gebirge, 788 p. In Bronn, H. G., Lethaea Geognostica (third edition). Volume 2. E. Schweizerbart, Stuttgart.Google Scholar
Scotese, C. R., and McKerrow., W. S. 1990. Revised world maps and introduction, p. 121. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Sheehan, P. M., and Coorough., P. J. 1990. Brachiopod zoogeography across the Ordovician-Silurian extinction event, p. 181187. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Simms, M. J. 1999. Chapter 2. Systematics, phylogeny and evolutionary history, p. 31–30. In Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J. (eds.), Fossil Crinoids. Cambridge University Press, Cambridge.Google Scholar
Simms, M. J., and Sevastopulo., G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Springer, F. 1906. Discovery of the disk of Onychocrinus, and further remarks of the Crinoidea Flexibilia. Journal of Geology, 14(6):467523.CrossRefGoogle Scholar
Springer, F. 1911. On a Trenton echinoderm fauna at Kirkfield, Ontario. Canada Geological Survey, Memoir 15-P:150.Google Scholar
Springer, F. 1913. Crinoidea, p. 173243. In von Zittel, K. A. (translated and edited by C. R. Eastman), Text-book of Paleontology. MacMillan and Company, Limited, London.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution Publication 2501:1486.Google Scholar
Strimple, H. L. 1963. Crinoids of the Hunton Group (Devonian-Silurian) of Oklahoma. Oklahoma Geological Survey Bulletin 100, 169 p.Google Scholar
Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony, Version 3.1.1. Computer program distributed by the Illinois Natural History Survey.Google Scholar
Swofford, D. L., and Begle., D. P. 1993. PAUP: phylogenetic analysis using parsimony, Version 3.1. Users Manual distributed by the Illinois Natural History Survey, 257 p.Google Scholar
Talbot, M. 1905. Revision of the New York Helderbergian crinoids. American Journal of Science, Series 4, 20:1734.CrossRefGoogle Scholar
Thomas, A. O. 1924. Echinoderms of the Iowa Devonian. Iowa Geological Survey, Volume 29 (Annual Reports for 1919 and 1920):385552.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Webster, G. D. 1973. Bibliography and index of Paleozoic crinoids 1942-1968. Geological Society of America Memoir, 137, 341 p.Google Scholar
White, E. 1964. British Palaeozoic fossils. British Museum of Natural History, London, Publication 624, 208 p.Google Scholar
Witzke, B. J., and Bunker., B. J. 1996. Relative sea-level changes during Middle Ordovician through Mississippian deposition in the Iowa area, North American craton, p. 307330. In Witzke, B. J., Ludvigson, G. A., Day (eds), and J., Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America Special Paper, 306.CrossRefGoogle Scholar
Zittel, K. A. Von. 1895. Grundzüge der Palaeontologie (Palaeozoologie), first edition. R, Oldenbourg, Munich, 971 p.Google Scholar