Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:27:32.752Z Has data issue: false hasContentIssue false

First virtual endocast description of an early Miocene representative of Pan-Octodontoidea (Caviomorpha, Hystricognathi) and considerations on the early encephalic evolution in South American rodents

Published online by Cambridge University Press:  23 January 2023

María E. Arnaudo*
Affiliation:
División Paleontología de Vertebrados, Unidades de Investigación Anexo Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Av. 122 y 60, B1900FWA La Plata, Argentina
Michelle Arnal
Affiliation:
División Paleontología de Vertebrados, Unidades de Investigación Anexo Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Av. 122 y 60, B1900FWA La Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina.
*
*Corresponding author.

Abstract

The study of the cranial endocast provides valuable information to understand the behavior of an organism because it coordinates sensory information and motor functions. In this work, we describe for the first time the anatomy of the encephalon of an early Miocene pan-octodontoid caviomorph rodent (Prospaniomys priscus Ameghino, 1902) found in the Argentinean Patagonia, based on a virtual 3D endocast. This fossil rodent has an endocast morphology here considered ancestral for Pan-Octodontoidea and other South American caviomorph lineages, i.e., an encephalon with anteroposteriorly aligned elements, mesencephalon dorsally exposed, well-developed vermis of the cerebellum, and rhombic cerebral hemispheres with well-developed temporal lobes. Prospaniomys Ameghino, 1902 also has relatively small olfactory bulbs, large paraflocculi of the cerebellum, and low endocranial volume and degree of neocorticalization. Its encephalization quotient is low compared with Paleogene North American and European noncaviomorph rodents, but slightly higher than in several late early and late Miocene caviomorphs. Paleoneurological anatomical information supports the hypothesis that Prospaniomys was a generalist caviomorph rodent with terrestrial habits and enhanced low-frequency auditory specializations. The scarce paleoneurological information indicates that several endocast characters in caviomorph rodents could change with ecological pressures. This work sheds light on the anatomy and evolution of several paleoneurological aspects of this particular group of South American rodents.

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, V.C., 1967, Skull adaptations in fossorial rodents. Mammalia: v. 31, p. 300312.10.1515/mamm.1967.31.2.300CrossRefGoogle Scholar
Álvarez, A., and Arnal, M., 2015, First approach to the paleobiology of the extinct Prospaniomys (Rodentia, Hystricognathi, Octodontoidea) through head muscle reconstruction and the study of craniomandibular shape variation: Journal of Mammalian Evolution, v. 22, p. 519533, https://doi.org/10.1007/s10914-015-9291-z.CrossRefGoogle Scholar
Álvarez, A., and Ercoli, M.D., 2017, Why pacaranas never say no: Analysis of the unique occipitocervical configuration of Tetrastylus intermedius Rovereto, 1914, and other dinomyids (Caviomorpha, Dinomyidae): Journal of Vertebrate Paleontology, v. 37, no. 6, https://doi.org/10.1080/02724634.2017.1385476.CrossRefGoogle Scholar
Álvarez, A., Moyers Arévalo, R.L., and Verzi, D.H., 2017, Diversification patterns and size evolution in caviomorph rodents: Biological Journal of the Linnean Society, v. 121, p. 907922, http://doi.org/10.1093/biolinnean/blx026.CrossRefGoogle Scholar
Ameghino, F., 1887, Enumeración sistemática de las especies de mamíferos fósiles coleccionadas por Carlos Ameghino en los terrenos eocenos de la Patagonia austral: Boletín del Museo de La Plata, v. 1, p. 126.Google Scholar
Ameghino, F., 1888, Lista de especies de mamíferos fósiles del Mioceno Superior de Monte Hermoso, hasta ahora conocidas: Buenos Aires, Coni, P.E. e Hijos, 21 p.Google Scholar
Ameghino, F., 1889, Contribución al conocimiento de los mamíferos fósiles de la República Argentina: Actas de la Academia Nacional de Ciencias en Córdoba, v. 6, p. 11027.Google Scholar
Ameghino, F., 1897, Mammifères Crétacés de l'Argentine: Deuxième contribution à la connaissance de la faune mammalogique dês couches à Pyrotherium: Boletín del Instituto Geográfico Argentino, v. 18, p. 406–429, 431521.Google Scholar
Ameghino, F., 1902, Première contribution à la connaissance de la faune mammalogique des couches à Colpodon: Boletín de la Academia Nacional de Ciencias de Córdoba, v. 17, p. 71138.Google Scholar
Ameghino, F., 1908, Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapadmalal: Anales del Museo Nacional de Buenos Aires, v. 10, p. 343423.Google Scholar
Ameghino, C., 1916, Dolicavia nov. gen. de Caviidae (Roedores) del Chapalmalense de Miramar (Provincia de Buenos Aires): Physis, v. 2, p. 283284.Google Scholar
Antoine, P.-O., Marivaux, L., Croft, D.A., Billet, G., Ganerod, M., Grégory Fanjat, C., Rousse, S., and Salas-Gismondi, S., 2012, Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography: Proceedings of the Royal Society, B, Biological Sciences, v. 279, p. 13191326, https://doi.org/10.1098/rspb.2011.1732.CrossRefGoogle ScholarPubMed
Argyle, E.C., and Mason, M.J., 2008, Middle ear structures of Octodon degus (Rodentia, Octodontidae), in comparison with those of subterranean caviomorphs: Journal of Mammalogy, v. 89, p. 14471455, https://doi.org/10.1644/07-MAMM-A-401.1.Google Scholar
Arnal, M., 2012, Sistemática, filogenia e historia evolutiva de roedores Octodontoidea (Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al origen de la familia Octodontidae [Ph.D. dissertation]: La Plata, Argentina, Universidad Nacional de La Plata, http://naturalis.fcnym.unlp.edu.ar/id/20120426001230 (accessed August 2022).Google Scholar
Arnal, M., and Kramarz, A.G., 2011, First complete skull of an octodontoid (Rodentia, Caviomorpha) from the early Miocene of South America and its bearing in the early evolution of Octodontoidea: Geobios, v. 44, p. 435444, https://doi.org/10.1016/j.geobios.2010.12.003.Google Scholar
Arnal, M., and Vucetich, M.G., 2015, Main radiation events in Pan-Octodontoidea (Rodentia, Caviomorpha): Zoological Journal of the Linnean Society, v. 175, p. 587–606, https://doi.org/10.1111/zoj.12288.Google Scholar
Arnal, M., Kramarz, A.G., Vucetich, M.G., and Vieytes, C.E., 2014, A new early Miocene octodontoid rodent (Hystricognathi, Caviomorpha) from Patagonia (Argentina) and a reassessment of the early evolution of Octodontoidea: Journal of Vertebrate Paleontology, v. 34, no. 2, p. 397406, https://doi.org/10.1080/02724634.2013.808203.Google Scholar
Arnal, M., Kramarz, A.G., Vucetich, M.G., Frailey, C.D., and Campbell, K.E. Jr., 2020, New Paleogene caviomorphs (Rodentia, Hystricognathi) from Santa Rosa, Peru: Systematics, biochronology, biogeography and early evolutionary trends: Papers in Palaeontology, v. 6, p. 193216, https://doi.org/10.1002/spp2.1264.Google Scholar
Arnal, M., Pérez, M.E., Tejada Medina, L.M., and Campbell, K.E. Jr., 2022, The high taxonomic diversity of the Paleogene hystricognath rodents (Caviomorpha) from Santa Rosa (Peru, South America) framed within a new geochronological context: Historical Biology, v. 2022, p. 124, https://doi.org/10.1080/08912963.2021.2017916.Google Scholar
Arnaudo, M.E., Arnal, M., and Ekdale, E.G., 2020, The auditory region of a caviomorph rodent (Hystricognathi) from the early Miocene of Patagonia (South America) and evolutionary considerations: Journal of Vertebrate Paleontology, v. 40, no. 2, https://doi.org/10.1080/02724634.2020.1777557.CrossRefGoogle Scholar
Barton, R.A., Purvis, A., and Harvey, P.H., 1995, Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores: Philosophical Transactions of The Royal Society, B, Biological Sciences, v. 348, p. 381392.Google ScholarPubMed
Bennet, E.T., 1829, The chinchilla, in Bennett, E.T., ed., Gardens and Menagerie of the Zoological Society Delineated, Quadrupeds, Volume 1: London: Charles Tilt, p. 112.Google Scholar
Bertrand, O.C., and Silcox, M.T., 2016, First virtual endocast of a fossil rodent: Ischyromys typus (Ischiromyidae, Oligocene) and brain evolution in rodents: Journal of Vertebrate Paleontology, v. 36, no. 3, https://doi.org/10.1080/02724634.2016.1096275.Google Scholar
Bertrand, O.C., Flynn, J.J., Croft, D.A., and Wyss, A.R., 2012, Two new taxa (Caviomorpha, Rodentia) from the early Oligocene Tinguiririca fauna (Chile): American Museum Novitates, v. 3750, p. 136, https://doi.org/10.1206/3750.2.Google Scholar
Bertrand, O.C., Schillaci, M.A., and Silcox, M.T., 2016a, Cranial dimensions as estimators of body mass and locomotor habits in extant and fossil rodents: Journal of Vertebrate Paleontology, v. 36, no. 1, p. 110, https://doi.org/10.1080/02724634.2015.1014905.CrossRefGoogle Scholar
Bertrand, O.C., Amador-Mughal, F., and Silcox, M.T., 2016b, Virtual endocast of eocene Paramys (Paramyidae): Oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires: Proceedings of the Royal Society, B, v. 283, no. 1823, p. 18, https://doi.org/10.1098/rspb.2015.2316.Google Scholar
Bertrand, O.C., Amador-Mughal, F., and Silcox, M.T., 2017, Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels: Journal of Anatomy, v. 230, p. 128151, https://doi.org/10.1111/joa.12537.CrossRefGoogle ScholarPubMed
Bertrand, O.C., Amador-Mughal, F., Lang, M.M., and Silcox, M.T., 2018, Virtual endocast of fossil Sciuroidea: Brain size reduction in the evolution of fossoriality: Palaeontology, v. 61, no. 6, p. 919948, https://doi.org/10.1111/pala.12378.Google Scholar
Bertrand, O.C., Amador-Mughal, F., Lang, M.M., and Silcox, M.T., 2019, New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia: Journal of Mammalian Evolution, v. 26, p. 345371, https://doi.org/10.1007/s10914-017-9425-6.Google Scholar
Bertrand, O.C., Püschel, H.P., Schwab, J.A., Silcox, M.T., and Brusatte, S.L., 2021, The impact of locomotion on the brain evolution of squirrels and close relatives. Communications Biology, 4, no. 1, p. 115, https://doi.org/10.1038/s42003-021-01887-8.Google ScholarPubMed
Bocquentin, J., Filho, J.P.S., and Negri, F.R., 1990, Neoepiblema acreensis, sp. n. (Mammalia, Rodentia) do Neogeno do Acre, Brasil: Boletim do Museu Paraense Emilio Goeldi, Serie Ciencias da Terra, v. 2, p. 6572.Google Scholar
Boivin, M., Ginot, S., Marivaux, L., Altamirano-Sierra, A.J., Pujos, F., Salas-Gismondi, R., Tejada-Lara, J.V., and Antoine, P.-O., 2018, Tarsal morphology and locomotor adaptation of some late middle Eocene caviomorph rodents from Peruvian Amazonia reveal early ecological diversity: Journal of Vertebrate Paleontology, v. 38, no. 6, https://doi.org/10.1080/02724634.2018.1555164.Google Scholar
Boivin, M., Marivaux, L., and Antoine, P.-O., 2019, L'apport du registre paléogène d'Amazonie sur la diversification initiale des Caviomorpha (Hystricognathi, Rodentia): Implications phylogénétiques, macroévolutives et paléobiogéographiques: Geodiversitas, v. 41, p. 143245, https://doi.org/10.5252/geodiversitas2019v41a4.CrossRefGoogle Scholar
Brisson, M.J., 1762, Regnum Animale in Classes 9, Lugduni Batavorum: Leiden, Theordorum Haak, 294 p.Google Scholar
Brookes, J., 1829, On a new genus of the order Rodentia: Transactions of the Linnean Society, v. 16, no. 1, p. 95104.CrossRefGoogle Scholar
Bugge, J. 1985, Systematic value of the carotid arterial pattern in rodents, in Luckett, W.P., and Hartenberger, J.-J., eds., Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis (NATO ASI Series): New York, Plenum Press, p. 355379.Google Scholar
Busker, F., Dozo, M.T., and Soto, I.M., 2020, New remains of Cephalomys arcidens (Rodentia, Caviomorpha) and a redefinition of the enigmatic Cephalomyidae: Journal of Systematic Palaeontology, v. 18, no. 19, p. 15891629, https://doi.org/10.1080/14772019.2020.1796833.Google Scholar
Campos, G.B., and Welker, W.I., 1976, Comparisons between brains of a large and a small hystricomorph rodent: Capybara, Hydrochaeris and guinea pig, Cavia: Neocortical projection regions and measurements of brain subdivisions: Brain, Behavior and Evolution, v. 13, no. 4, p. 243266.10.1159/000123814CrossRefGoogle Scholar
Candela, A.M., Rasia, L.L., and Pérez, M.E., 2012, Paleobiology of Santacrucian caviomorph rodents: A morphofunctional approach, in Vizcaíno, S.F., Kay, R.F., and Bargo, M.S., eds., Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation: Cambridge, UK, Cambridge University Press, p. 287305.Google Scholar
Cope, E.D., 1872, Second account of new Vertebrata from the Bridger Eocene: American Philosophical Society, v. 12, p. 466468.Google Scholar
Croft, D.A., 2000, Archaeohyracidae (Mammalia, Notoungulata) from the Tinguiririca Fauna, central Chile, and the evolution and paleoecology of South American mammalian herbivores [Ph.D. dissertation]: Chicago, University of Chicago, 327 p.Google Scholar
Cuvier, F., 1823a, Examen des espèces du genre porc-épic, et formation des genres ou sous- genres Acanthion, Eréthizon, Sinéthère et Sphiggure: Mémoires du Muséum National d'Histoire Naturelle, v. 9, p. 413437.Google Scholar
Cuvier, F., 1823b, Sur les rapports qui existent entre les animaux de la famille des Écureuils; c'est-à-dire, les Tamias, les Macroxus, les Ecureuils, les Sciuroptères et les Ptéromys: Mémoires du Museum National d'Histoire Naturelle de Paris, v. 10, p. 116128.Google Scholar
Dechaseaux, C., 1958, Encéphales des Simplicidentés fossiles, in Piveteau, J., ed., Traité de Paléontologie: Paris, Masson et Cie, p. 819821.Google Scholar
Desmarest, A.G., 1817, Le grande gerboise, Dipus maximus, Blainv.: Nouveau Dictionnaire d'Histoire Naturelle, v.13, p. 117119.Google Scholar
Desmarest, A.G., 1819, Note sur un mammifère de l'ordre Rongeurs, mentionné par quelques auteurs, mais dont l'existence n'est pas encore généralment admise par les Signaturalistes nomenclateurs: Journal de Physique, de Chimie, d'Histoire Naturelle et des Arts, v. 88, p. 205211.Google Scholar
Desmarest, A.G., 1822, Mammalogie ou description des espèces de mammifères, seconde partie, contenant les orders de Rongeurs, des Édentés, des Pachydermes, des Ruminans et des Cetacés, Part 2: Paris, Veuve Agasse, Encyclopédie Méthodique, p. 277555.Google Scholar
Dozo, M.T., 1997a, Paleoneurología de Dolicavia minuscula (Rodentia, Caviidae) y Paedotherium insigne (Notoungulata, Hegetotheriidae) del Plioceno de Buenos Aires, Argentina: Ameghiniana, v. 34, p. 427435.Google Scholar
Dozo, M.T., 1997b, Primer estudio paleoneurológico de un roedor caviomorfo (Cephalomyidae) y sus posibles implicancias filogenéticas: Mastozoología Neotropical, v. 4, p. 8996.Google Scholar
Dozo, M.T., and Martínez, G., 2016, First digital cranial endocast of late Oligocene Notohippidae (Notoungulata): Implications for endemic South American ungulates brain evolution: Journal of Mammalian Evolution, v. 23, p. 116, https://doi.org/10.1007/s10914-015-9298-5.Google Scholar
Dozo, M.T., Vucetich, M.G., and Candela, A.M., 2004, Skull anatomy and neuromorphology of Hypsosteiromys, a colhuehuapian erethizontid rodent from Argentina: Journal of Vertebrate Paleontology, v. 24, p. 228234, https://doi.org/10.1671/18.1.CrossRefGoogle Scholar
Eisenberg, J.F., 1981, The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior: Chicago, University of Chicago Press, 610 p.Google Scholar
Erxleben, J.C.P., 1777, Systema Regni Animalis per Classes, Ordines, Genera, Species, Varietates cum Synonymia et Historia Animalium, Classis 1, Mammalia: Lipsiae, Impensis Weygandianis, 636 p.Google Scholar
Evans, H.E., and de Lahunta, A., 2013, Miller's Anatomy of the Dog (fourth edition): St. Louis, Missouri, Elsevier Health Sciences, 872 p.Google Scholar
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F.M., Sonka, M., Buatti, J., Aylward, S.R., Miller, J.V., Pieper, S., and Kikinis, R., 2012, 3D Slicer as an image computing Platform for the 60 Quantitative Imaging Network: Magnetic Resonance Imaging, v. 30, p. 13231341, https://doi.org/10.1016/j.mri.2012.05.001.CrossRefGoogle Scholar
Fernández-Monescillo, M., Antoine, P.-O., Pujos, F., Gomes Rodrigues, H., Mamani Quispe, B., and Orliac, M., 2019, Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): New insights and implications on notoungulate encephalization and brain evolution: Journal of Mammalian Evolution, v. 26, p. 85100, https://doi.org/10.1007/s10914-017-9416-7.CrossRefGoogle Scholar
Ferreira, J.D., Negri, F.R., Sánchez-Villagra, M.R., and Kerber, L., 2020, Small within the largest: Brain size and anatomy of the extinct Neoepiblema acreensis, a giant rodent from the Neotropics: Biological Letters, v. 16, no. 20190914, https://doi.org/10.1098/rsbl.2019.0914.Google Scholar
Ferreira, J.D., Dozo, M.T., De Moura Bubadué, J., and Kerber, L., 2021, Morphology and postnatal ontogeny of the cranial endocast and paranasal sinuses of capybara (Hydrochoerus hydrochaeris), the largest living rodent: Journal of Morphology, v. 283, p. 125, https://doi.org/10.1002/jmor.21428.Google ScholarPubMed
Fleagle, J.G., and Bown, T.M., 1983, New primate fossil from the late Oligocene (Colhuehuapian) localities of Chubut Province, Argentina: Folia Primatologica, v. 41, p. 240266.Google Scholar
Frailey, C.D., and Campbell, K.E., 2004, Paleogene rodents from Amazonian Peru: The Santa Rosa local fauna, in Campbell, K.E., ed., The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru: Natural History Museum of Los Angeles County, Science Series, v. 40, p. 71130.Google Scholar
Freudenthal, M., and Martín-Suárez, E., 2013, Estimating body mass of fossil rodents: Scripta Geologica, v. 145, p. 1513.Google Scholar
Gingerich, P.D., and Gunnel, G.F., 2005, Brain of Plesiadapis cookie (Mammalia, Proprimates): Surface morphology and encephalization compared to those of primates and Dermoptera: Contributions from the Museum of Paleontology of the University of Michigan, v. 31, no. 8, p. 185195.Google Scholar
Gomes Rodrígues, H., 2015, The great variety of dental structures and dynamics in rodents: New insights into their ecological diversity, in Cox, P.G., and Hautier, L., eds., Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development: Cambridge, UK, Cambridge University Press, p. 424447.Google Scholar
Gray, J.E., 1842, Descriptions of some new genera and fifty unrecorded species of Mammalia: Annals and Magazine of Natural History, ser. 1, v. 10, p. 255267.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, no. 1, p. 19, http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed April 2022).Google Scholar
Hensel, R., 1872, Beiträge zur Kentniss der Säugethiere Süd- Brasiliens: Abhandlungen der Königlichen Akademie der Wissenschaftenzu Berlin, v. 1872, p. 1130.10.5962/bhl.title.15736CrossRefGoogle Scholar
Hill, J.E., 1935, The cranial foramina in rodents: Journal of Mammalogy, v. 16, no. 2, p. 121129.CrossRefGoogle Scholar
Hoffstetter, R., and Lavocat, R., 1970, Découverte dans le Déséadien de Bolivia de genres pentalophodontes appuyant les affinités africaines des Rongeurs Caviomorphes: Comptes Rendus de l'Académie des Sciences de Paris, v. 271, p. 172175.Google Scholar
Illiger, J.K.W., 1811, Prodromus Systematis Mammalium et Avium Additis Terminis Zoographicis Utriusque Classis, Eorumque Versione Germanica: Berlin, Berolini, C. Salfield, 302 p.Google Scholar
International Committee on Veterinary Gross Anatomical Nomenclature, 2017, Nomina Anatomica Veterinaria (NAV) (sixth edition): Hanover, Germany, Editorial Committee, 160 p.Google Scholar
Jeffery, N., and Spoor, F., 2006, The primate subarcuate fossa and its relationship to the semicircular canals, Part I: Prenatal growth: Journal of Human Evolution, v. 51, p. 537549, https://doi.org/10.1016/j.jhevol.2006.07.003.Google Scholar
Jerison, H.J., 1973, Evolution of the Brain and Intelligence: New York, Academic Press, 482 p.Google Scholar
Jerison, H.J., 2012, Digitized fossil brains: neocorticalization: Biolinguistics, v. 6, p. 383392, https://doi.org/10.5964/bioling.8929.Google Scholar
Kardong, K.V., 2012, Vertebrates: Comparative Anatomy, Function, Evolution (sixth edition); New York, McGraw-Hill, 794 p.Google Scholar
Kerber, L., Candela, A.M., Ferreira, J.D., Pretto, F.A., Bubadué, J., and Negri, F.R., 2022, Postcranial morphology of the extinct rodent Neopiblema (Rodentia, Chinchilloidea): Insights into the paleobiology of neopiblemids: Journal of Mammalian Evolution, v. 29, p. 207235, https://doi.org/10.1007/s10914-021-09567-4.CrossRefGoogle Scholar
Kerr, R., 1792, The Animal Kingdom or Zoological System, of the Celebrated Sr. Charles Linnaeus, Class I, Mammalia: Containing a Complete Systematic Description, Arrangement, and Nomenclature, of All Known Species and Varieties of the Mammalia, or Animals which give Suck to their Young; being a Translation of that part of the Systema Naturae, as lately Published, with Great Improvements, by Professor Gmelin of Goettingen: Together with Numerous Additions from More Recent Zoological Writers, and Illustrated with Copperplates: Edinburgh, A. Strahan, T. Cadell, and W. Creech, 400 p.Google Scholar
Köhler, M., and Moyà-Solà, S., 2004, Reduction of brain and sense organs in the fossil insular bovid Myotragus: Brain, Behavior and Evolution, v. 63, p. 125140, https://doi.org/10.1159/000076239.Google ScholarPubMed
Korth, W.W., 1984, Earliest Tertiary evolution and radiation of rodents in North America: Bulletin of Carnegie Museum of Natural History, v. 24, p. 171.10.5962/p.228603CrossRefGoogle Scholar
Korth, W.W., 1994, The Tertiary Record of Rodents in North America (Topics in Geobiology, v. 12): New York, Plenum Press, 339 p.Google Scholar
Korth, W.W., and Emry, R.J., 1991, The skull of Cedromus and a review of the Cedromurinae (Rodentia, Sciuridae): Journal of Paleontology, v. 65, p. 984994.CrossRefGoogle Scholar
Kraglievich, L., 1932, Diagnosis de nuevos géneros y especies de roedores cávidos y eumegámidos fósiles de la Argentina: Rectificación genérica de algunas especies conocidas y adiciones al conocimiento de otras: Anales de la Sociedad Científica Argentina, v. 114, p. 155181, 211–237.Google Scholar
Kramarz, G.A., Vucetich, M.G., and Arnal, M., 2013, A new early Miocene chinchilloid hystricognath rodent: An approach to the understanding of the early chinchillid dental evolution: Journal of Mammalian Evolution, v. 20, no. 3, p. 249261, https://doi.org/10.1007/s10914-012-9215-0.Google Scholar
Krubitzer, L., Campi, K. L., and Cooke, D.F., 2011, All rodents are not the same: A modern synthesis of cortical organization: Brain, Behavior and Evolution, v. 78, p. 5193, https://doi.org/10.1159/000327320.Google ScholarPubMed
Lacépède, B.G.E. de la V., 1799, Tableau des Divisions, Sous-divisions, Orders et Genres des Mammifères, Supplement to Discours d'Ouverture et de Clôture du Cours d'Histoire Naturelle Donné Dans le Muséum National d'Histoire Naturelle, l'An VII de la République, et Tableau Méthodiques des Mammifères et de Oiseaux: Paris, Plassan, 18 p.Google Scholar
Lavocat, R., and Parent, J.-P., 1985, Phylogenetic analysis of middle ear features in fossil and living rodents, in Luckett, W.P., and Hartenberger, J.-J., eds., Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis (NATO ASI Series): New York and London, Plenum Press, p. 333354.CrossRefGoogle Scholar
Legendre, S., 1986, Analysis of mammalian communities from the late Eocene and Oligocene of southern France: Palaeovertebrata, v. 16, no. 4, p. 191212.Google Scholar
Leidy, J., 1856, Notices of remains of extinct Mammalia discovered by Dr. F. V. Hayden in Nebraska Territory: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 8, p. 8890.Google Scholar
Leidy, J., 1871, Notice of some extinct rodents: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 22, p. 230232.Google Scholar
Lichtenstein, H., 1823, Verzeichniss der Doubletten des Zoologischen Museums der Königl. Universität zu Berlin nebst Beschreibung vieler bisber unbekannter Arten von Säugethieren, Vögeln, Amhibien und Fischen: Berlin, Doubletten Zoologischen Museums, 118 p.Google Scholar
Liem, K., Bernis, W., Walker, W.F., and Grande, L., 2001, Functional Anatomy of the Vertebrates: An Evolutionary Perspective (third edition): Belmont, California, Brooks/Cole, Thompson Learning, 759 p.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae (tenth edition), Volume 1, Regnum Animale: Stockholm, Laurentii Salvii, 824 pGoogle Scholar
Linnaeus, C., 1766, Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis (editio duodecima, reformata): Vienna, Typis Ioannis Thomae, 532 p.CrossRefGoogle Scholar
Loomis, F.B., 1907, Wasatch and Wind River rodents: American Journal of Science, ser. 4, v. 23, p. 123130.CrossRefGoogle Scholar
Lund, P.W., 1839, Coup-d'oeil sur le espèces éteintes de mammifères du Brésil: Extrait de quelques mémoires présentés à l'Academie royale des Sciences de Copenhague: Annales des Sciences Naturelles (Paris), ser. 2, v. 11, p. 214234.Google Scholar
Macrini, T.E., Rowe, T., and Archer, M., 2006, Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly: Journal of Morphology, v. 267, p. 10001015, https://doi.org/10.1002/jmor.10452.CrossRefGoogle ScholarPubMed
Macrini, T.E., Rougier, G.W., and Rowe, T., 2007, Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians: The Anatomical Record, v. 290, p. 875892, https://doi.org/10.1002/ar.20551.Google Scholar
Madden, R.H., 2015, Hypsodonty in Mammals: Evolution, Geomorphology, and the Role of Earth Surface Processes: Cambridge, UK, Cambridge University Press, 423 p.Google Scholar
Madozzo-Jaén, M.C., 2019, Systematic and phylogeny of Prodolichotis prisca (Caviidae, Dolichotinae) from the northwest of Argentina (late Miocene–early Pliocene): Advances in the knowledge of the evolutionary history of maras: Comptes Rendus Palevol, v. 18, no. 1, p. 3350, https://doi.org/10.1016/j.crpv.2018.07.003.CrossRefGoogle Scholar
Marivaux, L., Vianey-Liaud, M., and Jaeger, J.-J., 2004, High-level phylogeny of early Tertiary rodents: Dental evidence: Zoological Journal of the Linnean Society, v. 142, p. 105134, https://doi.org/10.1111/j.1096-3642.2004.00131.x.CrossRefGoogle Scholar
Marsh, O.C., 1872, Preliminary description of new Tertiary mammals: American Journal of Science, v. 4, p. 202224.Google Scholar
Mason, M.J., 2015, Functional morphology of rodent middle ears, in Cox, P.G., and Hautier, L., eds., Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development: Cambridge, UK, Cambridge University Press, p. 373404.Google Scholar
Matthew, W.D., 1910, On the osteology and relationships of Paramys and the affinities of the Ischyromyidae: Bulletin of the American Museum of Natural History, v. 28, p. 4371.Google Scholar
Matthew, W.D., 1920, A new genus of rodents from the middle Eocene: Journal of Mammalogy, vol. 1, no. 4, p. 168, 169.CrossRefGoogle Scholar
McClure, D.T., and Daron, G.H., 1971, The relationship of the developing inner ear, subarcuate fossa and paraflocculus in the rat: American Journal of Anatomy, v. 130, p. 235250.CrossRefGoogle ScholarPubMed
Meyen, F.J.F., 1833, Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde, Zweite Abhandlung, Säugethiere: Nova Acta Physico Medica Academiea Caesareae Leopoldino- Carolinae Naturae Curiosorum, v. 16, p. 549610.Google Scholar
Molina, G.I., 1782, Saggio Sulla Storia Naturale del Chili (first edition): Bologna, Stamperia di San Tomnaso d'Aquino, 368 pp.CrossRefGoogle Scholar
Novacek, M.J., 1986, The skull of Lepticif insectivorans and the higher-level classification of eutherian mammals: Bulletin of the American Museum of Natural History, v. 183, p. 1112.Google Scholar
Orliac, M.J, and Gilissen, E., 2012, Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains: Proceedings of the Royal Society, B, Biological Sciences, v. 279, p. 36703677, https://doi.org/10.1098/rspb.2012.1156.Google ScholarPubMed
Osborn, H.F., 1908, New fossil mammals from the Fayûm Oligocene, Egypt: Bulletin of the American Museum of Natural History, v. 24, no. 16, p. 265272.Google Scholar
Osgood, W.H., 1914, Four new mammals from Venezuela: Field Museum of Natural History Zoological Series, v. 10, p. 135141.Google Scholar
Pallas, P.S., 1766, Miscellanea Zoologica Quibus Novae Imprimis Atque Obscurae Animalium Species Descriuntur et Observationibus Iconibusque Illustrantur: The Hague, P. van Cleef, 224 p.Google Scholar
Pascual, R., 1967, Los roedores Octodontoidea (Caviomorpha) de la Formación Arroyo Chasicó (Plioceno inferior) de la Provincia de Buenos Aires: Revista del Museo de La Plata, Seccion Paleontología, v. 5, p. 259282.Google Scholar
Patterson, B., 1958, A new genus of erethizontid rodents from the Colhuehuapian of Patagonia: Breviora, v. 92, p. 14.Google Scholar
Patterson, B., and Pascual, R., 1968, New echimyids rodents from the Oligocene of Patagonia and a synopsis of the family: Breviora, v. 301, p. 114.Google Scholar
Patterson, B., and Wood, A.E., 1982, Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha: Bulletin of the Museum of Comparative Zoology, v. 149, p. 371543.Google Scholar
Patton, J.L., Pardiñas, U.F., and D'Elía, G., 2015, Mammals of South America, Volume 2, Rodents: Chicago, University of Chicago Press, 1384 p.CrossRefGoogle Scholar
Pérez, M.E., and Pol, D., 2012, Major radiations in the evolution of caviid rodents: Reconciling fossils, ghost lineages, and relaxed molecular clocks: PLoS ONE, v. 7, no. 10, e48380, https://doi.org/10.1371/journal.pone.0048380.Google ScholarPubMed
Peters, W., 1873, Über Dinomys eine merkwürdige neue Gattung der tachelschweinartigen Nagethiere aus den Hochgebirgen von Peru: Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin, v. 1873, p. 551, 552.Google Scholar
Pilleri, G., Gihr, M., and Kraus, C., 1984, Cephalization in rodents with particular reference to the Canadian beaver (Castor canadensis), in Pilleri, G., ed., Investigations on Beavers: Berne, Switzerland, Brain Anatomy Institute, p. 11102.Google Scholar
Poux, C., Chevret, P., Huchon, D., de Jong, D.D., and Douzery, E.J.P., 2006, Arrival and diversification of caviomorph rodents and platyrrhine primates in South America: Systematic Biology, v. 55, p. 228244, https://doi.org/10.1080/10635150500481390.CrossRefGoogle ScholarPubMed
Quiroga, J.C., 1988, Cuantificación de la corteza cerebral en moldes endocraneanos de mamíferos girencéfalos: Procedimiento y aplicación en tres mamíferos extinguidos: Ameghiniana, v. 25, no. 1, p. 6784.Google Scholar
Radinsky, L.B., 1968, A new approach to mammalian cranial analysis, illustrated by examples of prosimian primates: Journal of Morphology, v. 124, no. 2, p. 167179, https://doi.org/10.1002/jmor.1051240204.Google ScholarPubMed
Radinsky, L.B., 1976, Early primate brains: Facts and fiction: Journal of Human Evolution, v. 6, p. 7986.Google Scholar
Rafinesque, C.S., 1817, Descriptions of seven new genera of North American quadrupeds in Museum of Natural Sciences: American Monthly Magazine, v. 2, p. 4446.Google Scholar
Rasia, L.L., Candela, A.M., and Cañon, C., 2021, Comprehensive total evidence phylogeny of chinchillids (Rodentia, Caviomorpha): Cheek teeth anatomy and evolution: Journal of Anatomy, v. 239, p. 405423, https://doi.org/10.1111/joa.13430.CrossRefGoogle ScholarPubMed
Rinderknecht, A., and Blanco, R.E., 2008, The largest fossil rodent: Proceedings of the Royal Society of London, B, Biological Sciences, v. 275, p. 923928, https://doi.org/10.1098/rspb.2007.1645.Google ScholarPubMed
Rovereto, C., 1914, Los estratos araucanos y sus fósiles: Anales del Museo Nacional de Buenos Aires, v. 25, p. 1247.Google Scholar
Rusconi, C., 1934, Una nueva subespecie de tucu tuco viviente: Revista Chilena de Historia Natural, v. 38, p. 108110.Google Scholar
Saussure, M.H. de., 1860, Note sur quelques mammifères de Mexique: Revue et Magasin de Zoologie Pure et Appliquée Paris, sèr. 2, no. 12, p. 97110.Google Scholar
Say, , T., 1822,. On the quadruped belonging to the order Rodentia: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 2, p. 333343.Google Scholar
Silcox, M.T., Benham, A.E., and Bloch, J.I., 2010, Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates: Journal of Human Evolution, v. 58, p. 505521, https://doi.org/10.1016/j.jhevol.2010.03.008.CrossRefGoogle ScholarPubMed
Trouessart, E.-L., 1897, Catalogus Mammalium tam Viventium Quam Fossilium, Fasciculus 3, Rodentia 2 (Myomorpha, Histricomorpha, Lagomorpha): Berlin, R. Friedländer & Sohn, 664 p.Google Scholar
Tschudi, J.V., 1845, Untersuchungen über die Fauna Peruana, Parts 3–5: St. Gallen, Switzerland, Scheitlin und Zollikofer, p. 77244.Google Scholar
Upham, N.S., and Patterson, B., 2015, Evolution of caviomorph rodents: A complete phylogeny and timetree for living genera, in Vassallo, A., and Antonucci, D., eds., Biology of Caviomorph Rodents: Diversity and Evolution (SAREM series A, Investigaciones Mastozoológicas): Buenos Aires, Sociedad Argentina para el Estudio de los Mamíferos (SAREM), p. 63120.Google Scholar
Verzi, D.H., Álvarez, A., Olivares, A.I., Morgan, C.C., and Vassallo, A.I., 2010, Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents: Journal of Mammalogy, v. 91, no. 6, p. 15081516, https://doi.org/10.1644/09-MAMM-A-411.1.Google Scholar
Verzi, D.H., Olivares, A.I., and Morgan, C.C., 2014, Phylogeny and evolutionary patterns of South American octodontoids rodents: Acta Paleontologica Polonica, v. 59, p. 757769, https://doi.org/10.4202/app.2012.0135.Google Scholar
Vucetich, M.G., 1989, Rodents (Mammalia) of the Lacayani fauna revisited (Deseadan, Bolivia): Comparison with new Chinchillidae and Cephalomyidae from Argentina: Bulletin du Muséum National d'Histoire Naturelle, v. 11, no. 4, p. 233247.Google Scholar
Vucetich, M.G., and Ribeiro, A.M., 2003, A new and primitive rodent from the Tremembé Formation (late Oligocene) of Brazil, with comments on the morphology of the lower premolars of caviomorph rodents: Revista Brasileira de Paleontología, v. 5, p. 7382.Google Scholar
Vucetich, M.G, and Verzi, D.H., 1996, A peculiar octodontoid (Rodentia, Caviomorpha) with terraced molars from the lower Miocene of Patagonia (Argentina): Journal of Vertebrate Paleontology, v. 16, no. 2, p. 297302.CrossRefGoogle Scholar
Vucetich, M.G., and Vieytes, E.C., 2006, A middle Miocene primitive octodontoid rodent and its bearing on the early evolutionary history of the Octodontoidea: Palaeontolographica, Abteilung A, v. 27, no. 1, p. 7989, https://doi.org/10.1127/pala/277/2006/81.Google Scholar
Vucetich, M.G., Mazzoni, M.M., and Pardiñas, J.F., 1993, Los roedores de la Formación Collón Cura (Mioceno Medio), y la Ignimbrita Pilcaniyeu: Cañadón del Tordillo, Neuquén: Ameghiniana, v. 30, p. 361381.Google Scholar
Vucetich, M.G., Kramarz, A.G., and Candela, A.M., 2010a, Colhuehuapian rodents from Gran Barranca and other Patagonian localities: The state of the art, in Madden, R.H., Carlini, A.A., Vucetich, M.G., and Kay, R.F., eds., The Paleontology of Gran Barranca: Evolution and Environmental Change Through the Middle Cenozoic of Patagonia: Cambridge, UK, University of Cambridge Press, p. 193205.Google Scholar
Vucetich, M.G., Vieytes, E.C., Pérez, M.E., and Carlini, A.A., 2010b, The rodents from La Cantera and the early evolution of caviomorphs in South America, in Madden, R.H., Carlini, A.A., Vucetich, M.G., and Kay, R.F., eds., The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia: Cambridge, UK, University of Cambridge Press, p. 193215.Google Scholar
Vucetich, M.G., Arnal, M., Deschamps, C.M., Pérez, M.E., and Vieytes, E.C., 2015a, A brief history of caviomorph rodents as told by the fossil record, in Vassallo, A., and Antonucci, D., eds., Biology of Caviomorph Rodents: Diversity and Evolution (SAREM series A, Investigaciones Mastozoológicas): Buenos Aires, Sociedad Argentina para el Estudio de los Mamíferos (SAREM), p. 1162.Google Scholar
Vucetich, M.G., Dozo, M.T., Arnal, M., and Pérez, M.E., 2015b, New rodents (Mammalia) from the late Oligocene of Cabeza Blanca (Chubut) and the first rodent radiation in Patagonia: Historical Biology, v. 27, no. 2, p. 236257, https://doi.org/10.1080/08912963.2014.883506.CrossRefGoogle Scholar
Wagner, A., 1845, Diagnosen einiger neuen Arten von Nagern und Handflüglern: Archiv für Naturgeschichte, v. 11, no. 1, p. 145149.Google Scholar
Wahlert, J.H., 1974, The cranial foramina of protrogomorphous rodents: An anatomical and phylogenetic study: Bulletin of the Museum of Comparative Zoology, v. 146, p. 363410.Google Scholar
Wahlert, J.H., 1985, Cranial foramina of rodents, in Luckett, W.P., and Hartenberger, J.-L., eds., Evolutionary Relationships Among Rodents: A multidisciplinary analysis: New York, Plenum Press, p. 311332.CrossRefGoogle Scholar
Wahlert, J.H., Korth, W.W., and McKenna, M.C., 2006, The skull of Rapamys (Ischyromyidae, Rodentia) and description of a new species from the Duchesnean (late middle Eocene) of Montana: Palaeontographica, Abteilung A, v. 26, p. 3951, https://doi.org/10.1127/pala/277/2006/39.Google Scholar
Waterhouse, G.R., 1848, A Natural History of the Mammalia: Rodentia, or Gnawing Mammalia, Volume 2: London, Hippolyte Baillière, 500 p., 22 pls.Google Scholar
Wible, J.R., 1987, The eutherian stapedial artery: Character analysis and implications for superordinal relationships: Zoologica Journal of the Linnean Society, v. 91, p. 107135.Google Scholar
Wible, J.R., and Shelley, S.L., 2020, Anatomy of the petrosal and middle ear of the brown rat, Rattus norvegicus (Berkenhout, 1769) (Rodentia, Muridae): Annals of the Carnegie Museum, v. 86, no. 1, p. 135, https://doi.org/10.2992/007.086.0101.Google Scholar
Wied-Neuwied, M.P. zu, 1820, Ueber ein noch unbeschriebenes Säugethier aus der Familie der Nager: Isis von Oken, v. 6, p. 43.Google Scholar
Wilson, R.W., 1940, Californian paramyid rodents: Carnegie Institution of Washington Contributions to Paleontology, v. 514, p. 5983.Google Scholar
Wilson, R.W., 1949, On some White River fossil rodents, in Some Tertiary Mammals and Birds from North America: Washington, D.C., Carnegie Institution of Washington (Publication no. 584), p. 2750.Google Scholar
Wood, A.E., 1955, A revised classification of the rodents: Journal of Mammalogy, v. 36, no. 2, p. 165187.Google Scholar
Wood, A.E., 1962, The early Tertiary rodents of the family Paramyidae: Transactions of the American Philosophical Society, v. 52, p. 1261.Google Scholar
Wood, A.E., 1968, Early Cenozoic mammalian faunas, Fayum Province, Egypt, Part 2, The African Oligocene Rodentia: Bulletin of Peabody Museum of Natural History, v. 28, p. 23105.Google Scholar
Wood, A.E., and Patterson, B., 1959, The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution: Bulletin of the Museum of Comparative Zoology, v. 120, p. 281428.Google Scholar
Yao, L., Brown, J.P., Stampanoni, M., Marone, F., Isler, K., and Martin, R.D., 2012, Evolutionary change in the brain size of bats: Brain, Behavior and Evolution, v. 80, p. 1525, https://doi.org/10.1159/000338324.Google ScholarPubMed
Zimmermann, E.A.W., 1780, Geographische Geschichte der Menschen, und der algemein verbreiteten vierfüssigen Thiere, Volume 2: Leipzig: Wenganschen Buchhandlung, 432 p.Google Scholar