Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T03:22:47.084Z Has data issue: false hasContentIssue false

Evidence of oribatid mite herbivory in the stem of a Late Triassic tree fern from Arizona

Published online by Cambridge University Press:  20 May 2016

Sidney Ash*
Affiliation:
Department of Earth and Planetary Sciences, Northrop Hall, University of New Mexico, Albuquerque, New Mexico 87131-1116,

Abstract

Small coprolite-bearing borings occur in the stem of the filicalean tree fern Itopsidema vancleaveii Daugherty from the Chinle Formation of Late Triassic Age (Carnian Stage) in Petrified Forest National Park, Arizona. These borings are restricted to parenchyma within the leaf petioles and among the adventitious roots of the root mantle. Although they are not lined by wound tissue, some of the borings in the leaf petioles contain small discontinuous masses of wound-tissue at a few places along some of the walls, indicating that the plant was alive when it was attacked. Coprolites within the borings generally are small (mostly about 40–50 μm in diameter and 85–100 μm in length) and oval in longitudinal section and round to weakly hexagonal in transverse section; they consist of very small particles of unidentifiable plant matter. Although the weakly hexagonal coprolites are similar to those produced by termites but they are an order of magnitude smaller. Furthermore, the borings are much smaller than those produced by known extant termites. It is likely that oribatid mites produced the coprolite-bearing borings and coprolites. This occurrence is significant because it bridges the Late Permian to Early Jurassic gap in the geologic record of endophagous mites and also contributes new data on arthropod activity during the Late Triassic in southwestern North America.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. 1933. Ein fossiles Termitennest aus dem Unterpliozan des Wiener Beckens. Zoologische und Botanische Gesellschaft, 83:3839.Google Scholar
Abel, O. 1935. Vorzeitliche Lebensspuren. Fischer Verlag, Jena. 44 p.Google Scholar
Ash, S. R. 1997. Evidence of arthropod-plant interactions in the Upper Triassic of the southwestern United States. Lethaia, 29:237248.CrossRefGoogle Scholar
Ash, S. R. 1999. An Upper Triassic Sphenopteris showing evidence of insect predation from Petrified Forest National Park, Arizona. International Journal of Plant Science, 160:208215.CrossRefGoogle Scholar
Breed, W. J. 1972. Invertebrates of the Chinle Formation, p. 1922. In Breed, C. S. and Breed, W. J. (eds.), Investigations in the Chinle Formation. Museum of Northern Arizona Bulletin 47.Google Scholar
Brues, C. T. 1936. Evidences of insect activity preserved in wood. Journal of Paleontology, 10:637643.Google Scholar
Christianson, K. 1964. Bionomics of Collembola. Annual Review of Entomology, 9:147178.CrossRefGoogle Scholar
Cichan, M. L., and Taylor, T. N. 1982. Wood-borings in Premnoxylon: plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39:123127.CrossRefGoogle Scholar
Crepet, W. L. 1974. Investigations of North American Cycadeoids: the reproductive biology of Cycadeoidea. Palaeontographica, 148B:144169Google Scholar
Crowson, R. A. 1981. The biology of the Coleoptera. Academic Press, London, 802 p.Google Scholar
Daugherty, L. H. 1960. Itopsidema, a new genus of the Osmundaceae from the Triassic of Arizona. American Journal of Botany, 47:771777.CrossRefGoogle Scholar
Goth, K., and Wilde, V. 1992. Fraßspuren in permishen Hölzern aus der Wetterau. Senckenbergiana Lethaea 72:16.Google Scholar
Hantzschel, W. 1975. Trace fossils and problematica, p.W1W269. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1, Second Edition, Geological Society of America.Google Scholar
Hasiotis, S. T., and Dubiel, R. F. 1993. A possible termite nest from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. Geological Society of America Abstracts with Programs, 23(4):4849Google Scholar
Hasiotis, S. T., and Dubiel, R. F. 1995. Termite (Insecta: Isoptera) nest ichnofossils from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. Ichnos, 4:119130.CrossRefGoogle Scholar
Hasiotis, S. T., Dubiel, R. F., and Demko, T. M. 1995. Triassic hymenopterous nests: insect eusociality predates Angiosperm plants. Geological Society of America Abstracts with Programs, 27(4):13.Google Scholar
Hasiotis, S. T., Dubiel, R. F., Kay, P. T., Demko, T. M., Kowalaska, K., and McDaniel, D. 1998. Research update on Hymenopteran nests and cocoons, Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona, p.116121. In Santucci, V. L. and McCelland, L. (eds.), National Park Service Paleontological Research: Geologic Resources Division Technical Report 9801.Google Scholar
Hopkin, S. P. 1997. Biology of the Springtails (Insecta: Collembola). Oxford University Press, Oxford, 330 p.Google Scholar
Jarzembowski, E. A. 1990. A boring beetle from the Wealden of the Weald, p.273376. In Boucot, A. J. (ed.), Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Labandeira, C. C., Phillips, T. L., and Norton, R. A., 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12:319353.CrossRefGoogle Scholar
Lesnikowska, A. D. 1990. Evidence of herbivory of tree fern petioles from the Calhoun Coal (Upper Pennsylvania) of Illinois. Palaios, 5:7680.CrossRefGoogle Scholar
Linck, O. 1949. Fossile Bohrgange (Anobichnium simile n.g. n.sp.) an einem Keuperholz. Neus Jarbuch fur Mineralogie und Palaontologie Monatshefte, 4–6:180185Google Scholar
Rex, G. M. 1986. The preservation and paleoecology of the Lower Carboniferous silicified plant deposits at Esnost, near Autun, France. Geobios, 19:773788.CrossRefGoogle Scholar
Rex, G. M., and Galtier, J. 1986. Sur l'évidence d'interactions animal-végétal dans le Caronifère inférieur français. Compte Rendus de la Academie des Sciences, Paris, (11) 303:16231626.Google Scholar
Reymanówna, M. 1960. A cycadeoidean stem from the western Carpathians. Acta Palaeobotanica, 1(2):128Google Scholar
Rogers, A. F. 1938. Fossil termite pellets in opalized wood from Santa Maria, California. American Journal of Science, 5th series, 36:389392.CrossRefGoogle Scholar
Rohr, D. M., Boucot, A. J., Miller, J., and Abbott, M. 1986. Oldest termite nest from the Upper Cretaceous of west Texas. Geology, 14:8788.2.0.CO;2>CrossRefGoogle Scholar
Rothwell, G. W., and Scott, A. C. 1983. Coprolites within the marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 41:227232.CrossRefGoogle Scholar
Rozefelds, A. C., and De Baar, M. 1991. Silicified Kalotermitidae (Isoptera) frass in conifer wood from a mid-Tertiary rainforest in central Queensland, Australia. Lethaia, 24:439442.CrossRefGoogle Scholar
Saiki, K., and Yoshida, Y. 1999. A new bennettitalean trunk with unilocular five trace nodal structure from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany, 86:326332.CrossRefGoogle Scholar
Scott, A. C. 1992. Trace fossils of plant-arthropod interactions, p.197223. In Maples, C. G. and West, R. R. (eds.), Trace fossils. Short Courses in Paleontology 5. Paleontological Society.Google Scholar
Scott, A. C., and Taylor, T. N. 1983. Plant and/animal interactions during the Upper Carboniferous. Botanical Review, 49:259307.CrossRefGoogle Scholar
Seward, A. C. 1923. The use of the microscope in palaeobotanical research. Journal of the Royal Microscopy Society, p. 299.Google Scholar
Seward, A. C. 1924. On a new species of Tempskya from Montana: Tempskya knowltoni, sp.nov. Annals of Botany, 38:485507.CrossRefGoogle Scholar
Stidd, B. M., and Phillips, T. L. 1982. Johnhallia lacunosa gen.et sp. n.: a new pteridosperm from the Middle Pennsylvanian of Indiana. Journal of Paleontology, 56:10931102.Google Scholar
Tidwell, W. D., and Ash, S. R. 1990. On the Upper Jurassic stem Hermanophyton and its species from Colorado and Utah, USA. Palaeontographica, 218B:7792Google Scholar
Tidwell, W. D., and Clifford, H. T. 1995. Three new species of Millerocaulis (Osmundaceae) from Queensland, Australia. Australian Systematic Botany, 8:667685.CrossRefGoogle Scholar
Tidwell, W. D., and Rozefelds, A. C. 1991. Yulebaculis normanii gen. et sp. nov., a new fossil tree fern from South-eastern Queensland, Australia. Australian Systematic Botany, 4:421432.CrossRefGoogle Scholar
Walker, M. V. 1938. Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. U.S. National Museum Proceedings, 88:137141.CrossRefGoogle Scholar
Wallwork, J. A. 1967. Acari, p.363395. In Burges, A. and Raw, F. (eds.), Soil Biology. Academic Press, New York.Google Scholar
Wood, S. L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs. 6:1741.Google Scholar
Yao, Xuanli, Taylor, T. N., and Taylor, E. L. 1991. Silicified dipterid ferns from the Jurassic of Antarctica. Review of Paleobotany and Palynology, 67:353362.CrossRefGoogle Scholar
Zhou, Zhiyan, and Bole, Zhang. 1989. A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 59:133143.Google Scholar