Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T19:43:57.149Z Has data issue: false hasContentIssue false

Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance

Published online by Cambridge University Press:  14 July 2015

Vladimir N. Sergeev
Affiliation:
1Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia, ;
Andrew H. Knoll
Affiliation:
2Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA,
Natalya G. Vorob'Eva
Affiliation:
1Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia, ;

Abstract

Abundant and diverse microfossils from shales of the uppermost Ura Formation, central Siberia, document early to middle Ediacaran life along the southeastern margin of the Siberian Platform. The Ura Formation is well exposed in a series of sections in the Lena River basin but the best microfossil assemblages come from a locality along the Ura River. Here, the uppermost twenty meters of the formation contain diverse microfossils exceptionally well preserved as organic compressions. Fossils include nearly two dozen morphospecies of large acanthomorphic microfossils attributable to the Ediacaran Complex Acanthomorph Palynoflora (ECAP), a distinctive assemblage known elsewhere only from lower, but not lowermost, to middle Ediacaran rocks. Discovery of ECAP in strata previously considered Mesoproterozoic through Cryogenian confirms inferences from chemostratigraphy, dramatically changing stratigraphic interpretation of sedimentary successions and Proterozoic tectonics on the Siberian Platform. Systematic paleontology is reported for 36 taxa (five described informally) assigned to 23 genera of both eukaryotic and prokaryotic microfossils. One new genus and two new species are proposed: Ancorosphaeridium magnum n. gen. n. sp. and A. minor n. gen. n. sp.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1978. Revised models for depositional Grand Cycles, Cambrian of the southern Rocky Mountains, Canada. Bulletin of Canadian Petroleum Geology, 26: 515542.Google Scholar
Allard, B. and Templier, J. 2000. Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry, 54: 369380.Google Scholar
Andrew, T. E. and Herzig, A. 1984. The respiration rate of the resting eggs of Leptodora kindti (Focke 1844) and Bythotrephes longimanus Leydig 1860 (Crustacea, Cladocera) at environmentally encountered temperatures. Oecologia, 64: 241244.Google Scholar
Arouri, K., Greenwood, P. F., and Walter, M. R. 1999. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Organic Geochemistry, 30: 13231337.Google Scholar
Arouri, K., Greenwood, P. F., and Walter, M. R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterization. Organic Geochemistry, 31: 7589.CrossRefGoogle Scholar
Beardall, J. 2009. Allometry and stoichiometry of unicellular, colonial, and multicellular phytoplankton. New Phytologist, 181: 295309.Google Scholar
Belova, M. Yu. and Golovenok, V. K. 1999. Late Riphean mineralized microfossils from the Valyukhta Formation of the Baikal–Patom Highland. Stratigraphy and Geological Correlation, 7: 105115.Google Scholar
Blades-Eckelbarger, P. I. and Marcus, N. H. 1992. The origin of cortical vesicles and their role in egg envelope formation in the spiny eggs of a calanoid copepod, Centropages velificatus. Biological Bulletin, 182: 4153.Google Scholar
Bobrov, A. K., 1964. Geology of the Cis-Baikalian border trough. Structure and perspectives for oil content. Nauka, Moscow, 227 p. (In Russian).Google Scholar
Braehm, F. 1911. The variation in the statoblast of Pectinella magnifica. Archiv für Entwicklungsmechanik der Organismen, 32: 314348.Google Scholar
Chumakov, N. M. 1959. Stratigraphy and geology of the southern-west part of Vilyi Depression. Tectonics of the U.S.S.R. 4. Nauka, Moscow, 460 p. (In Russian).Google Scholar
Chumakov, N. M. 2001. Periodicity of major glaciations events and their correlation with endogenic activity of the Earth. Doklady Earth Sciences, 379: 507510.Google Scholar
Chumakov, N. M., Pokrovskii, B. G., and Melezhik, V. A. 2007. Geological history of the Late Precambrian Patom Supergroup (Central Siberia). Doklady Earth Sciences, 413: 343346.Google Scholar
Chumakov, N. M., Kapitonov, I. N., Semikhatov, M. A., Leonov, M. V., and Rud'ko, S. V. 2011. Vendian age of the upper part of the Patom Complex in middle Siberia: U/Pb LA_ICPMS dates of detrital zircons from the Nikol'skoe and Zherba formations. Stratigraphy and Geological Correlation, 19: 233237.Google Scholar
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences, U.S.A., 106: 65196524.Google Scholar
Condon, D., Zhu, Y., Bowring, S., Wang, W., Yang, A. H., and Jin, Y. G. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 9598.Google Scholar
Derry, L. A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 94: 152162.CrossRefGoogle Scholar
Eliáš, M., Nēmcová, Y., Škaloud, P., Neustupa, J., Kaufnerová, V., and Šejnohová, L. 2010. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore. International Journal of Systematic and Evolutionary Microbiology, 60: 12241235.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. Proceedings of the National Academy of Sciences, U.S.A., 49: 158164.Google Scholar
Faizullin, M. S. 1998. New data on Baikalian microfossils of the Patom Upland. Russian Geology and Geophysics, 3: 328337. (In Russian).Google Scholar
Golovenok, V. K. 1957. Stratigraphy of the northern part of Patom Upland. Vestnik LGU (Proceedings of Leningrad State University), 4: 5464. (In Russian).Google Scholar
Golovenok, V. K. and Belova, M. Yu. 1983. Obruchevellids from the Riphean of the Patom Highland and the Vendian of southern Kazakhstan. Doklady Academii Nauk SSSR, 272: 14621465. (In Russian).Google Scholar
Golubkova, E. Y. and Raevskaya, E. G. 2007. Lower Vendian complex of microfossils from the interior part of the Siberian platform, p. 3941. In The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere. Transactions of the International Conference on the IGCP Project 493. GEOS, Moscow. (In Russian).Google Scholar
Golubkova, E. Y., Raevskaya, E. G., and Kuznetsov, A. B. 2010. Lower Vendian microfossil assemblages of East Siberia: significance for solving regional stratigraphic problems. Stratigraphy and Geological Correlation, 18: 353375.Google Scholar
Gravestock, D. I., Morton, J. G. G., and Zang, W. L. 1997. Biostratigraphy and correlation, p. 8797. In Morton, J. G. G. and Drexel, J. F. (eds.), Petroleum Geology of South Australia, Vol. 3: Officer Basin. South Australia. Department of Mines and Energy Resources Report Book 97/19.Google Scholar
Grazhdankin, D. V. 2003. Structure and depositional environment of the Vendian Complex in the southeastern White Sea area. Stratigraphy and Geological Correlation, 11: 313331.Google Scholar
Grey, K. 1999. A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorphic acritarchs and other acid insoluble microfossils. Geological Survey of Western Australia Record 10, 23 p.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists Memoir 31, 439 p.Google Scholar
Grey, K. and Calver, C. R. 2007. Correlating the Ediacaran of Australia. Geological Society, London, Special Publication, 286: 115135.Google Scholar
Grotzinger, J. P. 1986. Evolution of Early Proterozoic passive margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada. Journal of Sedimentary Petrology, 56: 831847.Google Scholar
Grotzinger, J. P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype, p. 79106. In Grevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F. (eds.), Controls on Carbonate Platform and Basin Development. SEPM Special Publication 44.Google Scholar
Gupta, N. S., Michels, R., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., and Pancost, R. D. 2007. Experimental evidence for the formation of geomacromolecules from plant leaf lipids. Organic Geochemistry, 38: 2836.Google Scholar
Gupta, N. S., Cody, G. D., Tetlie, O. E., Briggs, D. E. G., and Summons, R. E. 2009. Rapid incorporation of lipids into macromolecules during experimental decay of invertebrates: initiation of geopolymer formation. Organic Geochemistry, 40: 589594.Google Scholar
Hagen, C., Siegmund, S., and Braune, W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37: 217226.Google Scholar
Hermann, T. N. 1979. Finds of fungi in Riphean, p. 129136. In Sokolov, B. S. (ed.), Paleontology of the Precambrian and Early Cambrian. Nauka, Leningrad. (In Russian).Google Scholar
Hermann, T. N. 1981. Filamentous microorganisms of the Lakhanda beds, the Maja River. Paleontologicheskii zhurnal, 2: 9497. (In Russian).Google Scholar
Hermann, T. N. 1990. Organic World a Billion Years Ago. Nauka, Leningrad, 50 p. (In Russian).Google Scholar
Hill, R. E. and Shepard, W. D. 1997. Observations on the identification of California anostracan cysts. Hydrobiologia, 359: 113123.Google Scholar
Hua, H., Chen, Z., Yuan, X. L., Xiao, S. H., and Cai, Y. P. 2010. The earliest Foraminifera from southern Shaanxi, China. Science China, Earth Science, 53: 17561764.Google Scholar
Javaux, E., Knoll, A. H., and Walter, M. R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2: 121132.Google Scholar
Khomentovsky, V. V., Nagovitsin, K. T., and Postnikov, A. A. 2008. Mayanian (1,100-850 Ma)—Prebaikalian Upper Riphean of Siberia. Russian Geology and Geophysics, 49: 122. (In Russian).Google Scholar
Khomentovsky, V. V., Postnikov, A. A., Karlova, G. A., Kochnev, B. B., Yakschin, M. S., and Ponomarchuk, V. A. 2004. The Vendian of the Baikal-Patom Upland, Siberia. Russian Geology and Geophysics, 45: 430448. (In Russian).Google Scholar
Khomentovsky, V. V., Schenfil', V. Yu., Yakschin, M. S., and Pyatiletov, V. G. 1972. The reference sections of upper Precambrian and Lower Cambrian deposits along the southern margin of the Siberian Platform. Nauka, Moscow, 356 p. (In Russian).Google Scholar
Knoll, A. H. 1992. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 35: 751774.Google Scholar
Knoll, A. H. 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences, U.S.A., 91: 67436750.Google Scholar
Kodner, R., Knoll, A. H., and Summons, R. E. 2009. Phylogenetic investigation of the aliphatic, non-hydrolysable biopolymer algaenan, with a focus on the green algae. Organic Geochemistry, 40: 854862.Google Scholar
Kolosov, P. N. 1982. Upper Precambrian paleoalgae remain from the Siberian Platform. Moscow, Nauka, 93 p. (In Russian).Google Scholar
Kolosova, S. P. 1991. Late Precambrian thorny microfossils of the east of the Siberian Platform. Algologia, 39: 5359. (In Russian).Google Scholar
Lemmermann, E. 1904. Das plankton schwedischer Gewässer. Arkiv für Botanik, Band 2, 2: 1209.Google Scholar
Livshic, V. I., Ivanov, A. I., Golovenok, V. K., and Yablonovskii, B. V. 1995. Stratigraphy. Proterozoic, p. 72145. In Precambrian of the Patom Upland. Nedra, Moscow. (In Russian).Google Scholar
Marcus, N. H. and Boero, F. 1998. Minireview: the importance of benthic-pelagic coupling and the forgotten role of life cycles in coastal aquatic systems. Limnology and Oceanography, 43: 763768.Google Scholar
Marshall, C. P., Javaux, E. J., Knoll, A. H., and Walter, M. R. 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambrian Research, 138: 208224.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288: 84845.Google Scholar
McFadden, K. A., Xiao, S., Zhou, C., Xie, G., Schiffbauer, J. D. 2006. Doushantuo-Pertatataka acritarchs in Ediacaran successions of South China: preservational bias or ecological control? Geological Society of America, Abstracts with Programs, 38: 303.Google Scholar
McFadden, K. A., Huang, J., Chu, X. L., Jiang, G. Q., Kaufman, A. J., Zhou, C. M., Yuan, X., and Xiao, S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, U.S.A., 105: 31973202.Google Scholar
Melnikov, N. V. 2005. Stratigraphy of oil and gas basins of Siberia. Riphean and Vendian of Siberian platform and its folded border. (Edited volume.) Novosibirsk, Academic Publishing House “Geo,” 428 p. (In Russian).Google Scholar
Mikhailova, N. S. 1986. New finds of the microfossils from the Upper Riphean deposits of the Krasnoyarsk region, p. 3137. In Current Problems of Modern Paleoalgology. Nauka, Kiev. (In Russian).Google Scholar
Missarzhevskii, V. V. 1989. The oldest shelly fossils and the stratigraphy of the Precambrian-Cambrian boundary deposits. Nauka, Moscow, 237 p. (In Russian).Google Scholar
Moczydłowska, M. 2005. Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research, 136: 283307.Google Scholar
Moczydłowska, M. 2008. New records of late Ediacaran microbiota from Poland. Precambrian Research, 167: 7192.Google Scholar
Moczydłowska, M. 2010. Life cycle of Early Cambrian microalgae from the Skiagia-plexus acritarchs. Journal of Paleontology, 84: 216230.Google Scholar
Moczydłowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36: 495521.Google Scholar
Moczydłowska, M., Schopf, J. W., and Willman, S. 2010. Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia, 43: 129136.Google Scholar
Nagovitsin, K. E., Faizullin, M. Sh., and Yakschin, M. S. 2004. New forms of Baikalian acanthomorphytes from the Ura Formation of the Patom Uplift, East Siberia. Russian Geology and Geophysics, 45: 719. (In Russian).Google Scholar
Niblack, T. L., Lambert, K. N., and Tylka, G. L. 2006. A model plant pathogen from the kingdom animalia: Heterodera glycines, the soybean cyst nematode. Annual Review of Phytopathology, 44: 283303.Google Scholar
Onoue, Y., Toda, T., and Ban, S. 2004. Morphological features and hatching patterns of eggs in Acartia steueri (Crustacea, Copepoda) from Sagami Bay, Japan. Hydrobiologia, 511: 1724.Google Scholar
Pokrovskii, B. G., Melezhik, V. A., and Bujakaite, M. I. 2006. Carbon, oxygen, strontium, and sulfur isotopic compositions in late Precambrian Rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems. Lithology and Mineral Resources, 41: 450474.Google Scholar
Porter, S. M. and Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26: 360385.Google Scholar
Porter, S. M., Mesterfeld, R., and Knoll, A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology, 77: 409429.Google Scholar
Pyatiletov, V. G. 1980. The Yudomian assemblage of microfossils of South Yakutia. Russian Geology and Geophysics, 21: 820. (In Russian).Google Scholar
Pyatiletov, V. G. 1983. Late Precambrian and Early Paleozoic stratigraphy of Central Siberia, p. 115121. In The Southwestern Border of the Siberian Platform. IGiG SO AN SSSR, Novosibirsk. (In Russian).Google Scholar
Pyatiletov, V. G. and Rudavskaya, V. A. 1985. Acritarchs of the Yudoma Complex, p. 151158. In Sokolov, B. S. and Ivanovskii, A. B. (eds.), The Vendian System 1, Palaeontology, Nauka, Moscow. (In Russian) (English Translation published in 1990, The Vendian System, Vol. 1. Springer-Verlag, Berlin, p. 179-188).Google Scholar
Rudavskaya, V. A. and Vasil'eva, N. J. 1989. Talsy assemblage of acritarchs from the Nepa-Botuoba Anteclise, p. 511. In Timoshina, N. A. (ed.), Phytostratigraphy and spore morphology of the ancient plants in the oil-gas provinces in the U.S.S.R. Vsesoyuznyi Nefteyanoi Nauchno-Issledovatelskii Geologorazvedochnyi Institut (VNIGRI), Leningrad. (In Russian).Google Scholar
Salop, L. I. 1964. Geology of the Baikalian folded area. Stratigraphy 1. Nedra, Moscow, 515 p. (In Russian).Google Scholar
Schepeleva, E. D. 1962. Plant (?) remains of unknown systematic position from the Bavlinskaya Group of the Volga-Ural Oil Province. Doklady AN SSSR, 142: 456457. (In Russian).Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. Journal of Paleontology, 42: 651688.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (late Precambrian) of the North-Central Amadeus Basin, Australia. Journal of Paleontology, 45: 925960.Google Scholar
Sergeev, V. N. 2006. Precambrian microfossils in cherts: their paleobiology, classification, and biostratigraphic usefulness. GEOS, Moscow, 280 p. (In Russian).Google Scholar
Sergeev, V. N. 2009. The distribution of microfossil assemblages in Proterozoic rocks. Precambrian Research, 173: 212222.Google Scholar
Sergeev, V. N., Knoll, A. H., and Grotzinger, J. P. 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northeastern Siberia. Paleontological Society Memoir 39, 37 p.Google Scholar
Sergeev, V. N., Semikhatov, M. A., Fedonkin, M. A., and Vorob'eva, N. G. 2010. Principal stages in evolution of Precambrian organic world: communication 2. The Late Proterozoic. Stratigraphy and Geological Correlation, 18: 561592.Google Scholar
Sovietov, Yu. K. 2002. Vendian foreland basin of the Siberian cratonic margin: Paleopangean accretionary phases. Russian Journal of Earth Sciences, 4: 363387.Google Scholar
Talyzina, N. and Moczydłowska, M. 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology, 112: 121.Google Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. Freeman, W. H., San Francisco, 1028 p.Google Scholar
Timofeev, B. V. and Herman, T. N. 1979. Precambrian microbiota of the Lakhanda Formation. In Sokolov, B. S. (ed.), Paleontology of the Precambrian and Early Cambrian. Nauka, Leningrad, p. 137147. (In Russian).Google Scholar
Timofeev, B. V., Herman, T. N., and Mikhailova, N. S. 1976. Microphytofossils from the Precambrian, Cambrian and Ordovician. Nauka, Leningrad, 106 p. (In Russian).Google Scholar
Tiwari, M. and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalayas and their stratigraphic significance. Himalayan Geology, 5: 193201.Google Scholar
Van Wavern, I. and Marcus, N. H. 1993. Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexico, and their implications for acritarch affinity. Special Papers in Paleontology, 48: 111124.Google Scholar
Veis, A. F., Vorob'eva, N. G., and Golubkova, E. Yu. 2006. The early Vendian microfossils first found in the Russian Plate: taxonomic composition and biostratigraphic significance. Stratigraphy and Geological Correlation, 14: 368385.Google Scholar
Volkova, N. A. 1985. Acritarchs and other plant microfossils of the East-European Platform, p. 130139. In Sokolov, B. S. and Ivanovskii, A. B. (eds.), The Vendian System 1, Palaeontology, Nauka, Moscow. (In Russian) (English translation published in 1990, The Vendian System, Vol. 1. Springer-Verlag, Berlin, p. 155-165.).Google Scholar
Volkova, N. A., Kirjanov, V. V., Piskun, L. V., Paskeviciene, L. T., and Yankauskas, T. V. 1979. Plant microfossils, p. 438. In Keller, B. M. and Rozanov, A. Yu. (eds.), Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Nauka, Moscow, (In Russian) (English translation published in 1983, Urbanek, A. and Rozanov, A. Yu. (eds.), Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Publishing House Wydawnictwa Geologiczne, Warsaw, Poland, p. 7–45).Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Semikhatov, M. A. 2006. Unique Lower Vendian Kel'tma microbiota, Timan Ridge: new evidence for the paleontological essence and global significance of the Vendian System. Doklady Earth Sciences, 410: 10381043.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2007. Microfossil assemblages from the Vychegda Formation of the East European Platform passive margin—a biostratigraphic model for the Upper Riphean (Crygenian)/Vendian (Ediacaran) boundary, p. 4246. In The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere. Transaction of the International Conference on the IGCP Project 493. GEOS, Moscow.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Chumakov, N. M. 2008. New finds of early Vendian microfossils in the Ura Formation: revision of the Patom Supergroup age, Middle Siberia. Doklady Earth Sciences, 419: 782787.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009a. Neoproterozoic microfossils from the northeastern margin of the East European Platform. Journal of Paleontology, 83: 161192.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009b. Neoproterozoic microfossils from the margin of the East European Platform and the search for a biostratigraphic model of lower Ediacaran rocks. Precambrian Research, 173: 163169.CrossRefGoogle Scholar
Wellman, C. H. 2002. Morphology and wall ultrastructure in Devonian spores with bifurcate-tipped processes. International Journal of Plant Sciences, 163: 451474.Google Scholar
Willman, S. and Moczydłowska, M. 2007. Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia, 40: 111123.Google Scholar
Willman, S. and Moczydłowska, M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Research, 162: 498530.Google Scholar
Willman, S., Moczydłowska, M., and Grey, K. 2006. Neoproterozoic (Ediacaran) diversification of acritarchs—a new record from the Munaroo 1 drillcore, eastern Officer Basin, Australia. Review of Palaeobotany and Palynology, 139: 1740.Google Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou Province, South China. Journal of Paleontology, 74: 767788.Google Scholar
Yankauskas, T. V. 1980. On the micropaleontological characteristics of the Middle and Upper Cambrian in the north-west of the East European Platform. Izvestiya Akademiya Nauk Estonskoyi SSR, Geology, 19: 131135. (In Russian).Google Scholar
Yankauskas, T. V. 1989. Precambrian microfossils of the U.S.S.R. (Edited volume.) Trudy Instituta Geologii i Geochronologii Dokembria SSSR Akademii Nauk. Nauka, Leningrad, 188 p. (In Russian).Google Scholar
Yan, Y. 1982. Schizofusa from the Chuanlinggou Formation of Changchen System in Jixian County. Bulletin of the Tianjin Institute of Geology and Mineral Resources, 6: 17.Google Scholar
Yin, C. Y., Bengtson, S., and Yue, Z. 2004. Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 49: 112.Google Scholar
Yin, L. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge District, western Hebei. Palaeontologia Cathayana, 2: 229249.Google Scholar
Yin, L. 1986. Sinian microfossil plants from the Yangtzee region. Dicengxue Zazhi (Journal of Stratigraphy), 4: 262269. (In Chinese).Google Scholar
Yin, L. 1987. Microbiotas of latest Precambrian sequences in China. Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary, 1: 415494.Google Scholar
Yin, L. and Li, Z. 1978. Precambrian microfossils of Southwest China. Memoir, Nanjing Institute of Geology and Palaeontology, Academica Sinica, 10: 41102. (In Chinese).Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cyst. Nature, 446: 661663.Google Scholar
Yin, L., Zhu, M., and Yuan, X. 2008. New data on Tianzhushania—an Ediacaran diapause egg cyst from Yichang, Hubei. Acta Palaeontologica Sinica, 47: 129140. (In Chinese).Google Scholar
Yuan, X. and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Wengan, Guizhou Province, southwestern China. Alcheringa, 22: 189222.Google Scholar
Zang, W. and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Association of Australasian Palaeontologists Memoir 12, 132 p.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleontological Society Memoir 50, 52 p.Google Scholar
Zhou, C., Xie, G., McFadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance. Geological Journal, 42: 229262.Google Scholar