Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:39:26.521Z Has data issue: false hasContentIssue false

Ecological tiering and the evolution of a stem: the oldest stemmed frond from the Ediacaran of Newfoundland, Canada

Published online by Cambridge University Press:  20 May 2016

Marc Laflamme
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada presently a Smithsonian Postdoctoral Fellow in the Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, D.C. 20013-7012, USA,
Lija I. Flude
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

The ecological segregation of large, multicellular eukaryotes in the Ediacaran in response to competitive feeding results in the evolution of novel morphological adaptations such as sturdy stems to elevate above lower-tier feeding guilds. Culmofrons plumosa n. gen. n. sp. lived attached to the ocean floor and probably fed osmotrophically from dissolved organic nutrients in the water column. Competition for nutrients with specialized lower-tiered organisms resulted in the evolution of a specialized non-feeding structure, drastically expanding the functional morphospace available to Ediacaran rangeomorphs. The first appearance of a cylindrical macroscopic stem in C. plumosa in the Briscal Formation of the Mistaken Point Ecological Reserve marks a significant departure from the modular repetitive branching typical of the Rangeomorpha, and exemplifies the importance of nutrient acquisition in early ecosystem engineering.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antcliffe, J. B. and Brasier, M. D. 2008. Charnia at 50: Developmental models for Ediacaran fronds. Palaeontology, 51:1126.Google Scholar
Bamforth, E. L. and Narbonne, G. M. 2009. New Ediacaran rangeomorphs from Mistaken Point, Newfoundland, Canada. Journal of Paleontology, 83:897913.CrossRefGoogle Scholar
Bamforth, E. L., Narbonne, G. M., and Anderson, M. M. 2008. Growth and ecology of an Ediacaran multibranched rangeomorph from the Mistaken Point Assemblage, Newfoundland. Journal of Paleontology, 82:763777.CrossRefGoogle Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 89. InLanding, E., Narbonne, G. M., and Myrow, P., (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum and Geological Survey Bulletin, 463 p.Google Scholar
Bottjer, D. J. and Ausich, W. I. 1986. Development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12:400420.Google Scholar
Bottjer, D. J. and Clapham, M. E. 2006. Evolutionary palaeoecology of Ediacaran benthic marine animals, p. 91114. InXiao, S. and Kaufman, A. J., (eds.), Topics of Geobiology, Vol. 27: Neoproterozoic Geobiology and Paleobiology. Springer, The Netherlands.CrossRefGoogle Scholar
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Bowring, S. A., Myrow, P., Landing, E., and Ramenzani, J. 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans. NASA Astrobiology Institute (NAI) General Meeting, Special Session VI: Early biosphere evolution, Abstract 13045:113–114.Google Scholar
Brasier, M. D. and Antcliffe, J. 2004. Decoding the Ediacaran enigma. Science, 305:11151117.Google Scholar
Brasier, M. D. and Antcliffe, J. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society, London, 166:363–84.Google Scholar
Clapham, M. E. and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea. Journal of Morphology, 252:315334.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334:10911097.CrossRefGoogle ScholarPubMed
Fedonkin, M. A. and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.CrossRefGoogle Scholar
Flude, L. I. and Narbonne, G. M. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences, 45:10951109.CrossRefGoogle Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 31, Pt. 3:211217.Google Scholar
Gehling, J. G. 1991. The case for Ediacaran roots to a metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G. 1999. Microbial mats in Terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.Google Scholar
Gehling, J. G. and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point Assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.Google Scholar
Glaessner, M. F. 1979. Biogeography and biostratigraphy: Precambrian, p. 79118. InRobinson, R. A. and Teichert, C.(eds.), Treatise on Invertebrate Paleontology, Pt. A, Introduction, Fossilization (Taphonomy), Biogeography and Biostratigraphy. The Geological Society of America and the University of Kansas Press, Lawrence, Kansas.Google Scholar
Grazhdankin, D. V. and Seilacher, A. 2005. A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geological Magazine, 142:571582.Google Scholar
Gürich, G. 1930. Über den Kuibis-Quarzit in Südwestafrika: Zeitschrift der Deutschen Geologischen Gesellschaft, 82:637.Google Scholar
Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika: Paläontologische Zeitschrift, 15:137154.Google Scholar
Hofmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology, 82:136.Google Scholar
Jenkins, J. F. 1985. The enigmatic Ediacaran (late Precambrian genus) Rangea and related forms. Paleobiology, 11:336355.CrossRefGoogle Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2006. The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39:1330.Google Scholar
Laflamme, M. and Narbonne, G. M. 2008a. Competition in a Precambrian world: Palaeoecology of Ediacaran fronds. Geology Today, 24:182187.Google Scholar
Laflamme, M. and Narbonne, G. M. 2008b. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.Google Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of the Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. InVickers-Rich, P. and Komarower, P.(eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286:237257.Google Scholar
Laflamme, M., Xiao, S., and Kowalewski, M. 2009. Osmotrophy in Modular Ediacara Organisms. Proceedings of the National Academy of Sciences, U.S.A., 106:1443814443.Google Scholar
Misra, S. B. 1969. Late Precambrian (?) fossils from southeastern Newfoundland. Geological Society of America Bulletin, 80:21332140.Google Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of the late Precambrian coelenterate-bearing rock, southeastern Newfoundland. Geological Society of America Bulletin, 82:979987.Google Scholar
Myrow, P. M. 1995. Neoproterozoic rocks of the Newfoundland Avalon zone. Precambrian Research, 7:123136.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.Google Scholar
Narbonne, G. M. 2005. The Ediacaran biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth Planet Sciences, 33:421442.Google Scholar
Narbonne, G. M. 2011. When life got big. Nature, 470:339340.Google Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: The oldest complex Ediacaran fossils. Geology, 31:2730.Google Scholar
Narbonne, G. M., Dalrymple, R. W., Gehling, J. G., Wood, D. A., Clapham, M. E., and Sala, R. A. 2001. Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Field Trip B5, Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, St. John's, NL, 98 p.Google Scholar
Narbonne, G. M., Dalrymple, R. W., Laflamme, M., Gehling, J. G., and Boyce, W. D. 2005. Life after snowball: The Mistaken Point Biota and the Cambrian of Avalon. North American Paleontological Convention Field Trip Guidebook, 100 p.Google Scholar
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran Rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503523.CrossRefGoogle Scholar
Pflug, H. D. 1972. Systematik der jung-präkambrischen Petalonamae: Paläontologische Zeitschrift, 46:5667.Google Scholar
Runnegar, B. N. and Fedonkin, M. A. 1992. Proterozoic metazoan body fossils, p. 369388. InSchopf, J. W. and Klein, C.(eds.), The Proterozoic Biosphere. Cambridge University Press, New York.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology. InVickers-rich, P. and Komarower, P.(eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286:355368.Google Scholar
Sperling, E. A. and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Development, 12:199207.Google Scholar
Sperling, E. A., Peterson, K. J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran ocean. Geobiology, 9:2433. Online November, 2010.Google Scholar
Van Kronendonk, M. J., Gehling, J. G., and Shields, G. 2008. Precambrian, p. 2336. InOgg, J. G., Ogg, G., and Gradstein, F. M.(eds.), The Concise Geologic Time Scale. Cambridge University Press, Cambridge, U.K.Google Scholar
Wilby, P. R., Carney, J. N., and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: Evidence of early widespread diversity in the deep ocean. Geology, 39:655658.Google Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Palaeoenviromental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:1375–139.Google Scholar
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution. 24:3140.Google Scholar