Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-18T19:50:24.371Z Has data issue: false hasContentIssue false

Early Triassic (Spathian) post-extinction microconchids from western Pangea

Published online by Cambridge University Press:  20 May 2016

Michał Zatoń
Affiliation:
University of Silesia, Faculty of Earth Sciences, Będzińska Street 60, PL-41-200 Sosnowiec, Poland,
Paul D. Taylor
Affiliation:
Natural History Museum, Department of Palaeontology, Cromwell Road, London SW7 5BD, United Kingdom,
Olev Vinn
Affiliation:
Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia,

Abstract

A new microconchid tentaculitoid, Microconchus utahensis new species, is described from the Lower Triassic (Spathian) Virgin Formation of two localities (Hurricane Cliffs and Beaver Dam Mountains) near St George, Utah. This small encrusting tubeworm, previously referred to erroneously as Spirorbis, has a laminated shell microstructure containing minute pores (punctae). The population from deeper water facies of the Beaver Dam Mountains is more abundant than that from Hurricane Cliffs and the tubes are significantly larger in size. Although represented by only one species (M. utahensis), microconchids are by far the most dominant component of the otherwise impoverished sclerobiont assemblage of the Virgin Formation, which also includes rare cemented bivalves and probable foraminifers. Whereas the remainder of the Virgin fauna is quite diverse, the low diversity of encrusters suggests a slow recovery from end-Permian mass extinctions. Indeed, more typically Mesozoic sclerobiont assemblages dominated by cyclostome bryozoans and serpulid polychaetes did not appear until the Late Triassic, probably Rhaetian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, F. and Taylor, P. D. 1987. Epizoan ecology and interactions in the Devonian of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 61:1731.CrossRefGoogle Scholar
Ball, H. W. 1980. Spirorbis from the Triassic Bromsgrove Sandstone Formation (Sherwood Sandstone Group) of Bromsgrove, Worcestershire. Proceedings of the Geologists' Association, 91:149154.CrossRefGoogle Scholar
Blakey, R. C. 1972. Stratigraphy and depositional environments of the Moenkopi Formation in southeastern Utah. American Association of Petroleum Geologists Bulletin, 56:604.Google Scholar
Bordeaux, Y. L. and Brett, C. E. 1990. Substrate specific associations of epibionts on Middle Devonian brachiopods: implications for paleoecology. Historical Biology, 4:203220.Google Scholar
Bottjer, D. J. and Schubert, J. K. 1997. Paleoecology of Lower Triassic marine carbonates in the southwestern USA. Brigham Young University Geology Studies, 42:1518.Google Scholar
Boyer, D. L., Bottjer, D. J., and Droser, M. L. 2004. Ecological signature of lower Triassic shell beds of the Western United States. Palaios, 19:372380.Google Scholar
Bouček, B. 1964. The Tentaculites of Bohemia. Publication of Czechoslovakian Academy of Sciences, Prague, 125p.Google Scholar
Brayard, A., Nützel, A., Stephen, D. A., Bylund, K. G., Jenks, J., and Bucher, H. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology, 38:147150.Google Scholar
Brönnimann, P. and Zaninetti, L. 1972. On the occurrence of the serpulid Spirorbis Daudin, 1800 (Annelida, Polychaetia, Sedentarida) in thin sections of Triassic rocks of Europe and Iran. Rivista Italiana di Paleontologia e Stratigrafia, 78:6790.Google Scholar
Fraiser, M. L. 2011. Paleoecology of secondary tierers from Western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 308:181189.CrossRefGoogle Scholar
Fraiser, M. L. and Bottjer, D. J. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios, 19:259275.2.0.CO;2>CrossRefGoogle Scholar
Goldfuss, A. 1831. Petrefacta Germaniae tam ea Quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhemiae Rhennae servantur Quam alia Quaecunque in Museis Hoeninghusiano Muensteriano Aliisque extant, Iconibus et descriptionibus illustrata. Erster Theil, Lieferung 3. Arnz & Comp., Düsseldorf, p. 165240.Google Scholar
Hagdorn, H. 2010. Posthörnchen-Röhren aus Muschelkalk und Keuper. Fossilien, 4/2010:229236.Google Scholar
Harries, P. J. and Knorr, P. O. 2009. What does the ‘Lilliput Effect' mean? Palaeogeography, Palaeoclimatology, Palaeoecology, 284:410.CrossRefGoogle Scholar
Hautmann, M., Smith, A. B., McGowan, A. J., and Bucher, H. 2011. Bivalves from the Olenekian (Early Triassic) of south-western Utah: systematics and evolutionary significance. Journal of Systematic Palaeontology, dx.doi.org/10.1080/14772019.2011.637516.Google Scholar
Hofmann, R., Hautmann, M., Wasmer, M., and Bucher, H. 2012. Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontologica Polonica, dx.doi.org/10.4202/app.2011.0060.Google Scholar
Hohenstein, V. 1913. Beiträge zur Kenntnis des Mittleren Muschelkalks und des unteren Trochitenkalks am östlichen Schwarzwaldrand. Geologisch-paläontologische Abhandlungen, Neue Folge, 12:173272.Google Scholar
Hyatt, A. and Smith, J. P. 1905. The Triassic cephalopod genera of North America. U.S. Geological Survey Professional Paper, 40:1394.Google Scholar
Kier, P. M. 1968. The Triassic echinoids of North America. Journal of Paleontology, 42:10001006.Google Scholar
Kietzke, K. K. 1989. Calcareous microfossils from the Triassic of southwestern United States, p. 223232. InLucas, S. G. and Hunt, A. P.(eds.), Dawn of the Age of Dinosaurs in the American Southwest. New Mexico Museum of Natural History.Google Scholar
Lescinsky, H. L. 1997. Epibiont communities: recruitment and competition on North American Carboniferous brachiopods. Journal of Paleontology, 71:3453.Google Scholar
Liddell, W. D. and Brett, C. E. 1982. Skeletal overgrowths among epizoans from the Silurian (Wenlockian) Waldron Shale. Paleobiology, 8:6778.Google Scholar
Mata, S. A. and Bottjer, D. J. 2011. Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300:158178.Google Scholar
McGowan, A. J., Smith, A. B., and Taylor, P. D. 2009. Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, U.S.A. Australian Journal of Earth Sciences, 56:859872.CrossRefGoogle Scholar
Murchison, R. I. 1839. The Silurian System, founded on geological researches in the counties of Salop, Hereford, Radnor, Montgomery, Caermarthen, Brecon, Pembroke, Monmouth, Gloucester, Worcester, and Stafford; with descriptions of the coal-fields and overlying formations. John Murray, London, 768p.Google Scholar
Nützel, A. and Schulbert, C. 2005. Facies of two important Early Triassic gastropod Lagerstätten: implications for diversity patterns in the aftermath of the end-Permian mass extinction. Facies, 51:480500.Google Scholar
Pérez-Huerta, A., Cusack, M., McDonald, S., Marone, F., Stampanoni, M., and MacKay, S. 2009. Brachiopod punctae: a complexity in shell biomineralisation. Journal of Structural Biology, 167:6267.Google Scholar
Peryt, T. M. 1974. Spirorbid-algal stromatolites. Nature, 249:239240.Google Scholar
Poborski, S. J. 1953. The Virgin Formation of the Saint George, Utah area. Plateau, 25:6979.Google Scholar
Poborski, S. J. 1954. Virgin Formation (Triassic) of the St. George, Utah area. Geological Society of America Bulletin, 65:9711006.CrossRefGoogle Scholar
Powers, C. M. and Bottjer, D. J. 2009. Behavior of lophophorates during the end-Permian mass extinction and recovery. Journal of Asian Earth Sciences, 36:413419.Google Scholar
Pruss, S. and Bottjer, D. J. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 19:551564.Google Scholar
Schubert, J. K., Bottjer, D. J., and Simms, M. J. 1992. Paleobiology of the oldest known articulate crinoid. Lethaia, 25:97110.Google Scholar
Stewart, J. H., Poole, F. G., and Wilson, R. F. 1972. Stratigraphy and origin of the Triassic Moenkopi Formation and related strata in the Colorado Plateau region. U.S. Geological Survey Professional Paper, 691:1195.Google Scholar
Taylor, P. D. and Michalik, J. 1991. Cyclostome bryozoans from the late Triassic (Rhaetian) of the West Carpathians, Czechoslovakia. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 182:285302.Google Scholar
Taylor, P. D. and Vinn, O. 2006. Convergent morphology in small spiral worm tubes ('Spirorbis') and its palaeoenvironmental implications. Journal of the Geological Society, London, 163:225228.CrossRefGoogle Scholar
Taylor, P. D., Vinn, O. and Wilson, M. A. 2010. Evolution of biomineralisation in 'lophophorates'. Special Papers in Palaeontology, 84:317333.Google Scholar
Taylor, P. D. and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62:1103.Google Scholar
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252:132144.Google Scholar
Twitchett, R. J., Feinberg, J. M., O'Conner, D. D., Alvarez, W., and McCollum, L. B. 2005. Early Triassic ophiuroids: their paleoecology, taphonomy, and distribution. Palaios, 20:213223.Google Scholar
Vinn, O. 2006. Two new microconchid (Tentaculita Bouček, 1964) genera from the early Palaeozoic of Baltoscandia and England. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2006/2:89100.CrossRefGoogle Scholar
Vinn, O. 2010. Shell structure of helically coiled microconchids from the Middle Triassic (Anisian) of Germany. Paläontologische Zeitschrift, 84:495499.Google Scholar
Vinn, O. and Mutvei, H. 2009. Calcareous tubeworms of the Phanerozoic. Estonian Journal of Earth Sciences, 58:286296.CrossRefGoogle Scholar
Vinn, O. and Taylor, P. D. 2007. Microconchid tubeworms from the Jurassic of England and France. Acta Palaeontologica Polonica, 52:391399.Google Scholar
Waeschenbach, A., Taylor, P. D., and Littlewood, D. T. J. 2012. A molecular phylogeny of bryozoans. Molecular Phylogenetics and Evolution, 62:718735.CrossRefGoogle ScholarPubMed
Wanner, H. E. 1921. Some faunal remains from the Trias of York County, Pennsylvania. Proceedings of the Academy of Natural Sciences of Philadelphia, 73:2537.Google Scholar
Weedon, M. J. 1990. Shell structure and affinity of vermiform ‘gastropods. ' Lethaia, 23:297309.Google Scholar
Weedon, M. J. 1991. Microstructure and affinity of the enigmatic Devonian tubular fossils Trypanopora. Lethaia, 24:223227.CrossRefGoogle Scholar
Weedon, M. J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic “spirorbids.” Acta Palaeontologica Polonica, 39:115.Google Scholar
Wilson, M. A., Vinn, O., and Yancey, T. E. 2011. A new microconchid tubeworm from the Lower Permian (Artinskian) of central Texas, U.S.A. Acta Palaeontologica Polonica, 56:785791.Google Scholar
Zatoń, M. and Krawczyński, W. 2011a. New Devonian microconchids (Tentaculita) from the Holy Cross Mountains, Poland. Journal of Paleontology, 85:757769.Google Scholar
Zatoń, M. and Krawczyński, W. 2011b. Microconchid tubeworms across the upper Frasnian–lower Famennian interval in the Central Devonian Field, Russia. Palaeontology, 54:14551473.Google Scholar
Zatoń, M. and Taylor, P. D. 2009a. Microconchids (Tentaculita) from the Middle Jurassic of Poland. Bulletin of Geosciences, 84:653660.Google Scholar
Zatoń, M. and Taylor, P. D. 2009b. Middle Jurassic cyclostome bryozoans from the Polish Jura. Acta Palaeontologica Polonica, 54:267288.Google Scholar
Zatoń, M. and Vinn, O. 2011a. Microconchids and the rise of modern encrusting communities. Lethaia, 44:57.Google Scholar
Zatoń, M. and Vinn, O. 2011b. Microconchids. Geology Today, 27:236239.Google Scholar
Zatoń, M., Kremer, B., Marynowski, L., Wilson, M. A., and Krawczyński, W. 2012. Middle Jurassic (Bathonian) encrusted oncoids from the Polish Jura, southern Poland. Facies, 58:5777.CrossRefGoogle Scholar