Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:39:41.342Z Has data issue: false hasContentIssue false

Early Jurassic hydrothermal vent community from the Franciscan Complex, California

Published online by Cambridge University Press:  20 May 2016

Crispin T. S. Little
Affiliation:
School of Earth Sciences, University of Leeds LS29 6HE, United Kingdom,
Taniel Danelian
Affiliation:
Laboratoire de Micropaléontologie, Université Pierre & Marie Curie (Paris VI), CNRS-ESA 7073, C.104, T.15–25, E4, 4, place Jussieu 75052, Paris Cedex 05, France,
Richard J. Herrington
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom,
Rachel M. Haymon
Affiliation:
Department of Geological Sciences, University of California, Santa Barbara 93106,

Abstract

The Figueroa sulfide deposit located in Franciscan Complex rocks in the San Rafael Mountains, California, contains the only known Jurassic hydrothermal vent community. Based on radiolarian biostratigraphy it is Pliensbachian (early Jurassic) in age. The Figueroa fossil organisms lived at a deepwater, high temperature vent site located on a mid-ocean ridge or seamount at an equatorial latitude. The vent site was then translated northeastward by the motion of the Farallon Plate and was subsequently accreted to its present location. The vent fossils are preserved as molds of pyrite and there is no remaining shell or tube material. The fossil assemblage is specimen rich, but of low diversity, and comprises, in order of decreasing abundance, vestimentiferan worm tubes, rhynchonellide brachiopods (Anarhynchia cf. gabbi), and trochoidean gastropods (Francisciconcha maslennikovi new genus and species). These fossils represent only primary consuming organisms, some of which may have had chemosynthetic microbial endosymbionts, like many modern dominant vent animals. The Figueroa vent assemblage shares vestimentiferan tube worms and gastropods with other fossil and modern vent communities, but is unique in having rhynchonellide brachiopods. It shares this feature with contemporary Mesozoic cold seep communities. Many other taxonomic groups found at modern vent sites are missing from the Figueroa assemblage. The presence of vestimentiferan tube worm fossils in the Figueroa deposit is at odds with the supposed time of origin of the modern vestimentiferans (∼100 Ma), based on molecular data.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adegoke, O. S. 1967. A probable pogonophoran from the early Oligocene of Oregon. Journal of Paleontology, 41:10901094.Google Scholar
Ager, D. V. 1959. The classification of the Mesozoic Rhynchonelloidea. Journal of Paleontology, 33:324332.Google Scholar
Ager, D. V. 1965. Mesozoic and Cenozoic Rhynchonellacea, p. 587625. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. H, Brachiopoda 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ager, D. V. 1968. The supposedly ubiquitous Tethyan brachiopod Halorella and its relatives. Journal of the Paleontological Society of India, 5–9:5470.Google Scholar
Ager, D. V., Childs, A., and Pearson, D. A. B. 1972. The evolution of the Mesozoic Rhynchonellida. Geobios, 5:157233.Google Scholar
Black, M. B., Halanych, K. M., Maas, P. A. Y., Hoeh, W. R., Hashimoto, J., Desbruyères, D., Lutz, R. A., and Vrijenhoek, R. C. 1997. Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Marine Biology, 130:141149.Google Scholar
Blake, M. C. Jr., and Jones, D. L. 1981. The Franciscan assemblage and related rocks in northern California: a reinterpretation, p. 307328. In Ernst, W. G. (ed.), The Geotectonic Development of California (Rubey Volume I). Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Boyce, A. J., Little, C. T. S., and Russell, M. J. 2003. A new fossil vent biota in the Ballynoe barite deposit, Silvermines, Ireland: proof of intracratonic seafloor hydrothermal activity 355 Myrs ago. Economic Geology, 98:649656.Google Scholar
Buckman, S. S. 1917. The brachiopoda of the Namyau beds, northern Shan States, Burma. Memoirs of the Geological Survey of India, Palaeontologica Indica, n. s. 3, 2:1299.Google Scholar
Campbell, K. A., and Bottjer, D. J. 1995a. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology, 23:321324.Google Scholar
Campbell, K. A., and Bottjer, D. J. 1995b. Peregrinella: an Early Cretaceous cold-seep-restricted brachiopod. Paleobiology, 21:461487.Google Scholar
Carter, E. S., Cameron, B. E. B., and Smith, P. L. 1988. Lower and Middle Jurassic Radiolarian biostratigraphy and systematic paleontology, Queen Charlotte Islands, British Columbia. Bulletin of the Geological Survey of Canada, 386:1109.Google Scholar
Caullery, M. 1914. Sur les Siboglinidae, type nouveau d'invertébrés receuillis par l'expédition du Siboga. Comptes rendus de l'Academie des sciences, serie III, 158:20142917.Google Scholar
Chevaldonné, P., Jollivet, D., Desbruyères, D., Lutz, R. A., and Vrijenhoek, R. C. 2002. Sibling species of eastern Pacific hydrothermal-vent worms (Ampharetidae, Alvinellidae, Vestimentifera) provide new mitochondrial CO1 clock calibration. Cahiers de Biologie Marine, 43:367370.Google Scholar
Cook, T. L., and Stakes, D. S. 1995. Biogeological mineralization in deep-sea hydrothermal vents. Science, 267:19751979.Google Scholar
Cossmann, M. 1916. Essais de Paléoconchologie compare. Volume 10. Author, Paris, 292 p.Google Scholar
Cuvier, G. 1797. Tableau élementaire de l'historie naturelle des animaeux [des Mollusques]. Baudouin, Paris, 710 p.Google Scholar
Dacqué, E. 1936. Über homöogenetische Gastropodenformen. Zentralblatt fur Mineralogie, Geologie und Paläontologie, 12(B):533546.Google Scholar
Desbruyères, D., and Laubier, L. 1986. Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux sources hydrothermales sous-marine: systématique, biologie et écologie. Canadian Journal of Zoology, 64:22272245.Google Scholar
Desbruyères, D., and Segonzac, M. (eds.). 1997. Handbook of Deep-sea Hydrothermal Vent Fauna. Ifremer, Brest, 279 p.Google Scholar
Desbruyères, D., A.-M. Alayse-Danet, S. Ohta, and Scientific Parties of Biolau and Starmer Cruises. 1994. Deep-sea hydrothermal communities in Southwestern Pacific back-arc basins (the North Fiji and Lau Basins): composition, microdistribution and food-web. Marine Geology, 116:227242.Google Scholar
Diblee, T. W. Jr. 1991. Geology of the San Rafael Mountains, Santa Barbara County, p. 331. In Lewis, L., Hubbard, P., Heath, E. G., and Pace, A. (eds.), Southern Coast Ranges: South Coast Geological Society, Annual Field Trip and Guidebook, 19.Google Scholar
Distel, D. L. 1998. Evolution of chemoautotrophic endosymbiosis in bivalves. BioScience, 48:277286.Google Scholar
Dragastan, O. 1966. A new serpulid species in the Upper Jurassic of Rumania. Paläontologische Zeitschrift, 40:147150.CrossRefGoogle Scholar
Duméril, A. M. C. 1806. Zoologie analytique ou méthode naturelle de classification des animales. Allais, Paris, 344 p.Google Scholar
Fisher, C. F. 1995. Towards an appreciation of hydrothermal-vent animals: their environment, physiological ecology, and tissue stable isotope values, p. 297316. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomson, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union Geophysical Monograph, 91.Google Scholar
Gaill, F., Shillito, B., Ménard, F., Goffinet, G., and Childress, J. J. 1997. Rate and process of tube production by the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Marine Ecology Progress Series, 148:135143.Google Scholar
Gardiner, S. L., McMullin, E., and Fisher, C. R. 2001. Seepiophila jonesi, a new genus and species of vestimentiferan tube worm (Annelida: Pogonophora) from hydrocarbon seep communities in the Gulf of Mexico. Proceedings of the Biological Society of Washington, 114:694707.Google Scholar
Gebruk, A. V., Galkin, S. V., Vereshchaka, A. L., Moskalev, L. I., and Southward, A. J. 1997. Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Advances in Marine Biology, 32:93144.Google Scholar
Gischler, E., Sandy, M. R., and Peckmann, J. 2003. Ibergirhynchia contraria (F. A. Roemer 1850), an early Carboniferous seep-related rhynchconellide brachiopod from the Harz Mountains, Germany—a possible successor to Dzieduszyckia? Journal of Paleontology, 77:293303.Google Scholar
Goedert, J. L., and Campbell, K. A. 1995. An Early Oligocene chemosynthetic community from the Makah Formation, Northwestern Olympic Peninsula, Washington. Veliger, 38:2229.Google Scholar
Goedert, J. L., and Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology, 18:11821185.Google Scholar
Grube, A. E. 1850. Die Familien der Anneliden. Archiv für Naturgeschichte, Berlin, 16:249364.Google Scholar
Hagstrum, J. T., Murchey, B. L., and Bogar, R. S. 1996. Equatorial origin for Lower Jurassic radiolarian chert in the Franciscan Complex, San Rafael Mountains, southern California. Journal of Geophysical Research, 101:613626.Google Scholar
Halanych, K. M., Lutz, R. A., and Vrijenhoek, R. C. 1998. Evolutionary origins and age of vestimentiferan tube-worms. Cahiers de Biologie Marine, 39:355358.Google Scholar
Hannington, M. D., Jonasson, I. R., Herzig, P. M., and Peterson, S. 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomson, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union Geophysical Monograph, 91:115157.Google Scholar
Haymon, R. M. 1983. Growth history of hydrothermal “black smoker” chimneys. Nature, 31:695698.Google Scholar
Haymon, R. M., and Koski, R. A. 1985. Evidence of an ancient hydrothermal vent community: fossil worm tubes in Cretaceous sulfide deposits of the Samail Ophiolite, Oman. Bulletin of the Biological Society of Washington, 6:5765.Google Scholar
Haymon, R. M., Koski, R. A., and Sinclair, C. 1984. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail Ophiolite, Oman. Science, 223:14071409.Google Scholar
Herrington, R. J., Maslennikov, V. V., Spiro, B., Zaykov, V. V., and Little, C. T. S. 1998. Ancient vent chimney structures in the Silurian massive sulphides of the Urals, p. 241258. In Mills, R. A. and Harrison, R. (eds.), Modern Ocean Floor Processes and the Geological Record. Special Publication of the Geological Society of London, 148.Google Scholar
Herzig, P. M., Hannington, M. D., and Arribas, A. Jr. 1998. Sulphur isotope composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Mineralium Deposita, 33:302309.Google Scholar
Hickman, C. S., and McLean, J. H. 1990. Systematic revision and suprageneric classification of trochacean gastropods. Natural History Museum of Los Angeles County Science Series, 34:1169.Google Scholar
Hori, R. 1997. The Toarcian radiolarian event in bedded cherts from southwestern Japan. Marine Micropaleontology, 30:159169.Google Scholar
Howell, B. F. 1962. Worms, p. W144W177. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. W. Miscellanea. Geological Society of America and University of Kansas Press, Lawrence, 269 p.Google Scholar
Hunt, S. 1992. Structure and composition of the shell of the archaeogastropod limpet Lepetodrilus elevatus elevatus (McLean, 1988). Malacologia, 34:129141.Google Scholar
Jennings, C. W., (comp.). 1977. Geological map of California: California Division of Mines and Geology, California Geologic Data Map Series Map 2, scale 1:75000, 1 sheet.Google Scholar
Johnston, G. 1865. A catalogue of the British non-parasitical worms in the collection of the British Museum. Trustees of the British Museum, London, 365 p.Google Scholar
Jones, M. L. 1985. On the Vestimentifera, new phylum: six species, and other taxa, from hydrothermal vents and elsewhere. Bulletin of the Biological Society of Washington, 6:117158.Google Scholar
Juniper, S. K. 1994. Ecology and biogeochemistry of Paralvinella sulfincola at northeast Pacific hydrothermal vents: review and comparison with Alvinella spp. of the east Pacific rise. Mémoires du Muséum National d'Histoire Naturelle, 162:453462.Google Scholar
Juniper, S. K., and Sarrazin, J. 1995. Interaction of vent biota and hydrothermal deposits: present evidence and future experimentation, p. 178193. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomson, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph, 91.Google Scholar
Juniper, S. K., and Tunnicliffe, V. 1997. Crustal accretion and the hot vent ecosystem. Philosophical Transactions of the Royal Society of London, series A, 355:459474.Google Scholar
Kanie, Y., and Nishida, T. 2000. New species of chemosynthetic bivalves, Vesicomya and Acharax, from the Cretaceous deposits of northwestern Hokkaido. Science Report of the Yokosuka City Museum, 47:7984.Google Scholar
Kennish, M. J., and Lutz, R. A. 1999. Calcium carbonate dissolution rates in deep-sea bivalve shells on the East Pacific Rise at 21°N: results of an 8-year in-situ experiment. Palaeogeography, Palaeoclimatology, Palaeoecology, 154:293299.Google Scholar
Knight, J. B., Cox, L. R., Keen, A. M., Batten, R. L., Yochleson, E. L., and Robertson, R. 1960. Systematic descriptions (archaeogastropoda), p. I169I310. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kojima, S. 2002. Deep-sea chemoautosynthesis-based communities in the Northwestern Pacific. Journal of Oceanography, 58:343363.Google Scholar
Kugler, H. G., Jung, P., and Saunders, J. B. 1984. The Joes River Formation of Barbados and its fauna. Eclogae Geologicae Helvetiae, 77:675705.Google Scholar
Kühn, O. 1949. Lehrbuch der Paläozoologie. Schweizerbarth, Stuttgart, 326 p.Google Scholar
Lalou, C., Münch, U., Halbach, P., and Reyss, J.-L. 1998. Radiochronological investigation of hydrothermal deposits from the MESO zone, Central Indian Ridge. Marine Geology, 149:243254.Google Scholar
Lamarck, J.-B. 1809. Philosophie Zoologique. Dentu, Paris, tome 1:xxv, 428 p.; Tome 2: 475 p. [Both dated 1809]Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae. 2, Regnum Animale. Edito decima, reformata. Author, Stockholm, 824 p.Google Scholar
Little, C. T. S. 2002. The fossil record of hydrothermal vent communities. Cahiers de Biologie Marine, 43:313316.Google Scholar
Little, C. T. S., and Thorseth, I. H. 2002. Hydrothermal vent microbial communities: A fossil perspective. Cahiers de Biologie Marine, 43:317319.Google Scholar
Little, C. T. S., and Vrijenhoek, R. C. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution, 18:582588.Google Scholar
Little, C. T. S., Herrington, R. J., Haymon, R. M., and Danelian, T. 1999a. Early Jurassic hydrothermal vent community from the Franciscan Complex, San Rafael Mountains, California. Geology, 27:167170.Google Scholar
Little, C. T. S., Cann, J. R., Herrington, R. J., and Morrisseau, M. 1999b. Late Cretaceous hydrothermal vent communities from the Troodos Ophiolite, Cyprus: palaeoecology and palaeobiogeography. Geology, 27:10271030.Google Scholar
Little, C. T. S., Maslennikov, V. V., Morris, N. J., and Gubanov, A. P. 1999c. Two Palaeozoic hydrothermal vent communities from the southern Ural mountains, Russia. Palaeontology, 42:10431078.Google Scholar
Little, C. T. S., Herrington, R. J., Maslennikov, V. V., and Zaykov, V. V. 1998. The fossil record of hydrothermal vent communities, p. 259270. In Mills, R. and Harrison, K. (eds.), Modern Ocean Floor Processes and the Geological Record. Special Publication of the Geological Society of London, 148.Google Scholar
Little, C. T. S., Herrington, R. J., Maslennikov, V. V., Morris, N. J., and Zaykov, V. V. 1997. Silurian hydrothermal-vent community from the southern Urals, Russia. Nature, 385:146148.Google Scholar
Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research, 24:857863.Google Scholar
Lutz, R. A., Shank, T. M., Fornari, D. J., Haymon, R. A., Lilley, M. D., von Damm, K. L., and Desbruyères, D. 1994. Rapid growth at deep-sea vents. Nature, 371:663664.CrossRefGoogle Scholar
MacPherson, G. J., Phipps, S. P., and Grossman, J. N. 1990. Diverse sources in Franciscan melanges, California Coast Ranges. Journal of Geology, 98:845862.Google Scholar
Maginn, E. J., Little, C. T. S., Herrington, R. J., and Mills, R. A. 2002. Sulphide mineralisation in the deep sea hydrothermal vent polychaete, Alvinella pompejana: implications for fossil preservation. Marine Geology, 181:337356.Google Scholar
Malmgren, A. J. 1867. Annulata Polychaeta Spetsbergiae, Grönlandiae, Islandiae et Scandinaviae hactenus cognita. Öfversigt av Kongliga Vetenskaps-Akademies Förhandlingar (Stockholm), 24:127235.Google Scholar
Manceñido, M. O., and Dagys, A. S. 1992. Brachiopods of the circum-Pacific region, p. 328332. In Westermann, G. E. G. (ed.), The Jurassic of the Circum-Pacific. Cambridge University Press, Cambridge.Google Scholar
Matsuoka, A. 1995. Jurassic and Lower Cretaceous radiolarian zonation in Japan and in the western Pacific. The Island Arc, 4:140153.Google Scholar
McArthur, A. G., and Tunnicliffe, V. 1998. Relics and antiquity revisited in the modern vent fauna, p. 271291. In Mills, R. A. and Harrison, K. (eds.), Modern Ocean Floor Processes and the Geological Record. Special Publication of the Geological Society of London, 148.Google Scholar
McLean, J. H. 1990. Neolepetopsidae, a new docoglossate limpet family from hydrothermal vents and its relevance to patellogastropod evolution. Journal of Zoology, London, 222:485528.Google Scholar
McLean, J. H., and Quinn, J. F. Jr. 1987. Cataegis, new genus of three new species from the continental slope (Trochidae: Cataeginae new subfamily). Nautilus, 101:111116.Google Scholar
Mišík, M., Soták, J., and Ziegler, V. 1999. Serpulid worms Mercierella Fauvel, Durandella Dragastan and Carpathiella nov. gen. from the Jurassic, Cretaceous and Paleogene of the Western Carpathians. Geologica Carpathica, 50:305312.Google Scholar
Moore, R. C. (ed.). 1960. Treatise on invertebrate paleontology, Pt. I, Mollusca, 1. Geological Society of America and University of Kansas Press, Lawrence, 521 p.Google Scholar
Moroni, M. A. 1966. Malacofauna del “Calcare a Lucine” di S. Sofia, Forli. Palaeontographia Italica, 60,6987.Google Scholar
Murchey, B. 1984. Biostratigraphy and lithostratigraphy of chert in the Franciscan Complex, Marin Headlands, California, p. 5170. In Blake, M. C. (ed.), Franciscan Geology of Northern California. SEPM, 5.Google Scholar
Newman, W. A. 1985. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? Bulletin of the Biological Society of Washington, 6:231242.Google Scholar
Nishizono, Y., Sato, T., and Murata, M. 1997. A revised Jurassic radiolarian zonation for the South Belt of the Chichibu terrane, western Kyushu, Southwestern Japan. Marine Micropaleontology, 30:117138.CrossRefGoogle Scholar
Oehlert, D. P. 1897. Brachiopodes, p. 11891334. In Fischer, P. (ed.), Manuel de Conchyliologie. Savy, Paris.Google Scholar
Orghidan, T. N. 1985. Note préliminaire sur la première découverte des pogonophores vestimentifères fossiles à Cuba avec la description de Palaeoriftia antillarum gen., sp.n. Travaux du Museum d'Histoire Naturelle, 27:343346.Google Scholar
Page, B. M. 1981. The southern Coast Ranges, p. 329417. In Ernst, W. G. (ed.), The Geotectonic Development of California (Rubey Volume I). Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Peckmann, J., Gischler, E., Oschmann, W., and Reitner, J. 2001. An early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology, 29:271274.Google Scholar
Peckmann, J., Walliser, O. H., Riegel, W., and Reitner, J. 1999. Signatures of hydrocarbon venting in a middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Antiatlas, Morocco). Facies, 40:281296.Google Scholar
Peckmann, J., Goedert, J. L., Thiel, V., Michaelis, W., and Reitner, J. 2002. A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology, 49:855873.Google Scholar
Peek, A. S., Gustafson, R. G., Lutz, R. A., and Vrijenhoek, R. C. 1997. Evolutionary relationships of deep-sea hydrothermal vent and cold-seep clams (Bivalvia: Vesicomyidae): results from mitochondrial cytochrome oxidase subunit I. Marine Biology, 130:151161.Google Scholar
Pessagno, E. A. Jr., and Poisson, A. 1981. Lower Jurassic Radiolaria from the Guemueslue Allochton of southwestern Turkey (Taurides occidentales). Bulletin of the Mineralogical and Resource Exploration Institute of Turkey, 92:7496.Google Scholar
Pessagno, E. A. Jr., and Whalen, P. A. 1982. Lower and Middle Jurassic Radiolaria (multicyrtid Nassellariina) from California, east-central Oregon, and the Queen Charlotte Islands, British Columbia. Micropaleontology, 28:111169.Google Scholar
Pessagno, E. A. Jr., Blome, C. D., Carter, E. S., Macleod, N., Whalen, P. A., and Yeh, K.-Y. 1987. Studies of North American Jurassic Radiolaria. Pt. II, Preliminary Radiolarian Zonation for the Jurassic of North America. Cushman Foundation for Foraminiferal Research, Special Publication, 23:118.Google Scholar
Posenato, R., and Morsilli, M. 1999. New species of Peregrinella (Brachiopoda) from the Lower Cretaceous of the Gargano Promontory (southern Italy). Cretaceous Research, 20:641654.Google Scholar
Rafinesque, C. S. 1815. Analyse de la nature, ou tableau de l'univers et des corps organises. Author, Palermo, 224 p.Google Scholar
Roemer, F. A. 1850. Beitrage zur Kenntnis des nordwestlichen Harzgebirges. Palaeontographica, 3:167.Google Scholar
Rouse, G. W. 2001. A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zoological Journal of the Linnean Society, 132:5580.Google Scholar
Salvini-Plawen, L. V. 1980. A reconsideration of systematics in the Mollusca (phylogeny and higher classification). Malacologia, 19:249278.Google Scholar
Sandy, M. R. 1995. A review of some Palaeozoic and Mesozoic brachiopods as members of cold seep chemosynthetic communities: “Unusual” palaeoecology and anomalous palaeobiogeographic patterns explained. Földtani Közlöny, Bulletin of the Hungarian Geological Society, 125:241258.Google Scholar
Sandy, M. R. 2001. Mesozoic articulated brachiopods from the Western Cordillera of North America: their significance for palaeogeographic and tectonic reconstruction, palaeobiogeography and palaeoecology, p. 394410. In Brunton, C. H. C., Cocks, L. R. M., and Long, S. L. (eds.), Brachiopods Past and Present. Taylor and Francis, London.Google Scholar
Sandy, M. R., and Campbell, K. A. 1994. A new rhynchonellid genus from Tithonian (Upper Jurassic) cold seep deposits of California and its paleoenvironmental setting. Journal of Paleontology, 68:12431252.Google Scholar
Shank, T. M., Black, M. B., Halanych, K. M., Lutz, R. A., and Vrijenhoek, R. C. 1999. Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit I. Molecular Phylogenetics and Evolution, 13:244254.Google Scholar
Shank, T. M., Fornari, D. J., von Damm, K. L., Lilley, M. D., Haymon, R. M., and Lutz, R. A. 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise). Deep-Sea Research II, 45:465515.Google Scholar
Shpanskaya, A. Yu., Maslennikov, V. V., and Little, C. T. S. 1999. Vestimentiferan tubes from the Early Silurian and Middle Devonian hydrothermal biota of the Uralian palaeobasin. Paleontologicheskii Zhurnal, 33:222228. (In Russian)Google Scholar
Sibuet, M., and Olu, K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II, 45:517567.Google Scholar
Siemiradzki, J. 1909. Sur la faune dévonienne des environs de Kielce d'après les collections originales du feu le prof. L. Zeijsner. Bulletin International de l'Académie des Sciences de Cracovie, 1909:765770.Google Scholar
Silberling, N. J., Schoellhamer, J. E., Gray, C. H. Jr., and Imlay, R. W. 1961. Upper Jurassic fossils from Bedford Canyon Formation, Southern California. Bulletin of the American Association of Petroleum Geologists, 45:17461765.Google Scholar
Solomon, M., and Sun, S.-S. 1997. Earth's evolution and mineral resources, with particular emphasis on volcanic-hosted massive sulphide deposits and banded iron formations. Journal of Australian Geology and Geophysics, 17:3348.Google Scholar
Southward, E. C. 1991. Three new species of Pogonophora, including two vestimentiferans, from hydrothermal sites in the Lau Back-arc Basin (Southwest Pacific Ocean). Journal of Natural History, 25:859881.Google Scholar
Southward, E. C., and Galkin, S. V. 1997. A new vestimentiferan (Pogonophora: Obturata) from hydrothermal vent fields in the Manus Back-arc Basin (Bismark Sea, Papua New Ginea, Southwest Pacific Ocean). Journal of Natural History, 31:4355.Google Scholar
Southward, E. C., Tunnicliffe, V., and Black, M. 1995. Revision of the species of Ridgeia from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora. Obturata = Vestimentifera). Canadian Journal of Zoology, 73:282295.Google Scholar
Squires, R. L., and Goedert, J. L. 1991. New Late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. Journal of Paleontology, 65:412416.Google Scholar
Steele-Petrovic, H. M. 1976. Brachiopod food and feeding processes. Palaeontology, 19:417436.Google Scholar
Stoffers, P., Worthington, T., Hekinian, R., Petersen, S., Hannington, M., Türkay, M., Ackermand, D., Borowski, C., Dankert, S., Fretzdorff, S., Haaase, K., Hoppe, A., Jonasson, I., Kuhn, T., Lancaster, R., Monecke, T., Renno, A., Stecher, J., and Weiershäuser, L. 2002. Widespread silicic volcanism and hydrothermal activity on the Northern Pacific-Antarctic Ridge. InterRidge News, 11:3032.Google Scholar
Stoliczka, F. 1868. The gastropoda of the Cretaceous rocks of southern India. Memoirs of the Geological Survey of India, series 5, Pt. 1–10, 497 p.Google Scholar
Theile, J. 1924. Revision des Systems der Trochacea. Mitteilungen aus dem Zoologischen Museum in Berlin, 11:4774.Google Scholar
Tivey, M. K., and McDuff, R. E. 1990. Mineral precipitation in the walls of black smoker chimneys; a quantitative model of transport and chemical reaction. Journal of Geophysical Research, 95:1261712637.Google Scholar
Tufar, W. 1990. Modern hydrothermal activity, formation of complex massive sulphide deposits and associated vent communities in the Manus back-arc basin (Bismark Sea, Papua New Guinea). Mitteilungen Österreichischen Geologischen Gesellschaft, 82:183210.Google Scholar
Tunnicliffe, V. 1991. The biology of hydrothermal vents: ecology and evolution. Annual Review of Marine Biology and Oceanography, 29:319407.Google Scholar
Tunnicliffe, V. 1992. The nature and origin of the modern hydrothermal vent fauna. Palaios, 7:338350.Google Scholar
Tunnicliffe, V., Fowler, C. M. R., and McArthur, A. G. 1996. Plate tectonic history and hot vent biogeography, p. 225238. In McLeod, C. J., Tyler, P. A., and Walker, C. L. (eds.), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges. Special Publication of the Geological Society of London, 118.Google Scholar
Tunnicliffe, V., McArthur, A. G., and McHugh, D. 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Advances in Marine Biology, 34:353442.Google Scholar
Tyler, P. A., and Young, C. M. 1999. Reproduction and dispersal at vents and cold seeps. Journal of the Marine Biological Association of the United Kingdom, 79:193208.Google Scholar
van der Land, J., and Norrevang, A. 1975. The systematic position of Lamellibrachia (Annelida, Vestimentifera). Zeitschrift für Zoologische Systematik und Evolutionsforschung, 1:86101.Google Scholar
Van Dover, C. L. 1995. Ecology of Mid-Atlantic Ridge hydrothermal vents, p. 257294. In Parson, L. M., Walker, C. L., and Dixon, D. R. (eds.), Hydrothermal Vents and Processes. Special Publication of the Geological Society of London, 87.Google Scholar
Van Dover, C. L. 2000. The Ecology of Deep-sea Hydrothermal Vents. Princeton University Press, New Jersey, 424 p.Google Scholar
Van Dover, C. L., Grassle, J. F., and Boudrais, M. 1990. Hydrothermal vent fauna of Escanaba Trough (Gorda Ridge), p. 285287. In Murray, G. R. (ed.), Gorda Ridge: A Seafloor Spreading Center in the United States' Exclusive Economic Zone. Springer-Verlang, Berlin.Google Scholar
Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M., and Vrijenhoek, R. C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 295:12531257.Google Scholar
Van Dover, C. L., Humphris, S. E., Fornari, D., Cavanaugh, C. M., Collier, R., Goffredi, S. K., Hashimoto, J., Lilley, M. D., Reysenbach, A. L., Shank, T. M., von Damm, K. L., Banta, A., Gallant, R. M., Götz, D., Green, D., Hall, J., Harmer, T. L., Hurtado, L. A., Johnson, P., McKiness, Z. P., Mererdith, C., Olson, E., Pan, I. L., Turnipseed, M., Won, Y., Young, C. R. III, and Vrijenhoek, R. C. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294:818823.Google Scholar
Wahl, A. D. 1995. The geology of the Franciscan Complex, San Rafael Mountains mélange, California. Unpublished Master's thesis, University of California, Santa Barbara, 121 p.Google Scholar
Warén, A., and Bouchet, P. 2001. Gastropods and Monoplacophora from hydrothermal vents and seeps; new taxa and records. Zoologica Scripta, 44:116231.Google Scholar
Webb, M. 1971. The morphology and formation of the pogonophoran tube and its value in systematics. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 9:169181.Google Scholar
Williams, T. 1851. Report on the British Annelida. Report of the British Association for the Advancement of Science (Ipswich), 1851:159272.Google Scholar
Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L. 1996. A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society of London B, 351:11711193.Google Scholar
Windoffer, R., and Giere, O. 1997. Symbiosis of the hydrothermal vent gastropod Ifremeria nautilei (Provannidae) with endobacteria-structural analyses and ecological considerations. Biological Bulletin, 193:381392.Google Scholar
Yao, A. 1982. Middle Triassic to Early Jurassic Radiolarians from the Inuyama Area, Central Japan. Journal of Geosciences, Osaka City University, 25:5370.Google Scholar
Yeh, K.-Y. 1987. Taxonomic studies of Lower Jurassic Radiolaria from east-central Oregon. National Museum of Natural Science Special Publication 2, 169 p.Google Scholar
Zbinden, M., Martinez, I., Guyot, F., Cambon-Bonavita, M. A., and Gaill, F. 2001. Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms. European Journal of Mineralogy, 13:653658.Google Scholar