Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T15:15:57.412Z Has data issue: false hasContentIssue false

The earliest bathymodiolin mussels: an evaluation of Eocene and Oligocene taxa from deep-sea methane seep deposits in western Washington State, USA

Published online by Cambridge University Press:  14 July 2015

Steffen Kiel
Affiliation:
Georg-August University Göttingen, Geoscience Center, Department of Geobiology, Goldschmidtstrasse 3, 37077 Göttingen, Germany,
Kazutaka Amano
Affiliation:
Joetsu University of Education, Department of Geoscience, Joetsu 943-8512, Japan,

Abstract

Bathymodiolin mussels are a group of bivalves associated with deep-sea hydrothermal vents and other reducing deep-sea habitats, and they have a particularly rich early Cenozoic fossil record in western Washington State, U.S.A. Here we recognize six species from middle Eocene to latest Oligocene deep-water methane seep deposits in western Washington. Two of them are new: Vulcanidas? goederti from the middle Eocene Humptulips Formation and Bathymodiolus (sensu lato) satsopensis from the late Oligocene part of the Lincoln Creek Formation. Very similar to the latter but more elongate are specimens from the early Oligocene Jansen Creek Member of the Makah Formation and are identified as B. (s.l.) aff. satsopensis. Bathymodiolus (s.l.) inouei Amano and Jenkins, 2011 is reported from the Lincoln Creek Formation. Idas? olympicus Kiel and Goedert, 2007 was previously known from late Eocene to Oligocene whale and wood falls in western Washington and is here reported from Oligocene seep deposits of the Makah and Pysht Formations. Vulcanidas? goederti occurs at a seep deposit from a paleodepth possibly as great as 2000 m, suggesting that its living relative, Vulcanidas insolatus Cosel and Marshall, 2010, which lives at depths of only 150–500 m, is derived from a deep-water ancestor. The bathymodiolins in western Washington indicate that the group originated at least in the middle Eocene and underwent a first diversification in the late Eocene to Oligocene. Early ontogenetic shells of all fossil species investigated so far, including the middle Eocene Vulcanidas? goederti, reflect planktotrophic larval development indicating that this developmental mode is an ancestral trait of bathymodiolins.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amano, K. 1984. Two species of Mytilidae (Bivalvia) from the Miocene deposits in Hokkaido, Japan. Venus, 43:183188.Google Scholar
Amano, K. and Jenkins, R. G. 2007. Eocene drill holes in cold-seep bivalves of Hokkaido, northern Japan. Marine Ecology, 28:108114.CrossRefGoogle Scholar
Amano, K. and Jenkins, R. G. 2011. New fossil Bathymodiolus (s. l.) (Mytilidae, Bivalvia) from Oligocene seep-carbonates in eastern Hokkaido, Japan—with remarks on the evolution of Bathymodiolus (s. l.). The Nautilus, 125:2935.Google Scholar
Amano, K., Jenkins, R. G., Aikawa, M., and Nobuhara, T. 2010. A Miocene chemosynthetic community from the Ogaya Formation in Joetsu: Evidence for depth-related ecologic control among fossil seep communities in the Japan Sea back-arc basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 286:164170.CrossRefGoogle Scholar
Amano, K. and Kiel, S. 2007. Drill holes in bathymodiolin mussels from a Miocene whale-fall community in Hokkaido, Japan. The Veliger, 49:265269.Google Scholar
Amano, K. and Little, C. T. S. 2005. Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 215:345356.CrossRefGoogle Scholar
Amano, K., Little, C. T. S., and Inoue, K. 2007. A new Miocene whale-fall community from Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 247:236242.CrossRefGoogle Scholar
Babcock, R. S., Burmester, R. F., Engebretson, D. C., Warnock, A. C., and Clark, K. P. 1992. A rifted margin origin for the Crescent basalts and related rocks in the northern Coast Range volcanic province, Washington and British Columbia. Journal of Geophysical Research, 97:67996821.CrossRefGoogle Scholar
Barnes, L. G. and Goedert, J. L. 2001. Stratigraphy and paleoecology of Oligocene and Miocene desmostylian occurrences in western Washington State, U.S.A. Bulletin of the Ashoro Museum of Paleontology, 2:722.Google Scholar
Barry, J. P., Greene, G., Orange, D. L., Baxter, C. H., Robinson, B. H., Kochevar, R. E., Nybakken, J. W., Reed, D. L., and McHugh, C. M. 1996. Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep-sea Research I, 43:17391762.CrossRefGoogle Scholar
Batt, G. E., Brandon, M. T., Farley, K. A., and Roden-Tice, M. 2001. Tectonic synthesis of the Olympic Mountains segment of the Cascadia wedge, using two-dimensional thermal and kinematic modeling of thermochronological ages. Journal of Geophysical Research, 106:2673126746.CrossRefGoogle Scholar
Bertolaso, L. and Palazzi, S. 1994. La posizione sistematica di Delphinula bellardii Michelotti, 1847. Bolletino Malacologico, 29:291302.Google Scholar
Brandon, M. T. and Vance, J. A. 1992. Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. American Journal of Science, 292:565636.CrossRefGoogle Scholar
Burns, C., Campbell, K. A., and Mooi, R. 2005. Exceptional crinoid occurrences and associated carbonates of the Keasey Formation (early Oligocene) at Mist, Oregon, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:210231.CrossRefGoogle Scholar
Campbell, K. A. 1992. Recognition of a Mio-Pliocene cold seep setting from the Northeast Pacific Convergent Margin, Washington, U.S.A. Palaios, 7:422433.CrossRefGoogle Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:362407.CrossRefGoogle Scholar
Campbell, K. A. and Bottjer, D. J. 1993. Fossil cold seeps. National Geographic Research and Exploration, 9:326343.Google Scholar
Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, M. C. I., Bidigare, R. R., and Anderson, A. E. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: Mussels fueled by gas. Science, 233:13061308.CrossRefGoogle ScholarPubMed
Cosel, R. v., Comtet, T., and Krylova, E. M. 1999. Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents on the Azores Triple Junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. The Veliger, 42:218248.Google Scholar
Cosel, R. v. and Janssen, R. 2008. Bathymodioline mussels of the Bathymodiolus (s. l.) childressi clade from methane seeps near Edison Seamount, New Ireland, Papua New Guinea (Bivalvia: Mytilidae). Archiv für Molluskenkunde, 137:195224.CrossRefGoogle Scholar
Cosel, R. v. and Marshall, B. A. 2003. Two new species of large mussels (Bivalvia: Mytilidae) from active submarine volcanoes and a cold seep off the eastern North Island of New Zealand, with description of a new genus. The Nautilus, 117:3146.Google Scholar
Cosel, R. v. and Marshall, B. A. 2010. A new genus and species of large mussel (Bivalvia: Mytilidae) from the Kermadec Ridge. Tuhinga: Records of the Museum of New Zealand Te Papa Tongarewa, 21:5973.Google Scholar
Cosel, R. v., Métivier, B., and Hashimoto, J. 1994. Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau Basin and the North Fiji Basin, western Pacific, and the Snake Pit area, Mid-Atlantic Ridge. The Veliger, 37:374392.Google Scholar
Cosel, R. v. and Salas, C. 2001. Vesicomyidae (Mollusca: Bivalvia) of the genera Vesicomya, Waisiuconcha, Isorropodon and Callogonia in the eastern Atlantic and the Mediterranean. Sarsia, 86:333366.CrossRefGoogle Scholar
Craddock, C., Hoeh, W. R., Gustafson, R. G., Lutz, R. A., Hashimoto, J., and Vrijenhoek, R. C. 1995. Evolutionary relationships among deep–sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Marine Biology, 121:477485.CrossRefGoogle Scholar
Desbruyères, D., Segonzac, M., and Bright, M. 2006. Handbook of deep-sea hydrothermal vent fauna. Second completely revised version. Denisia, 18:1544.Google Scholar
Distel, D. L., Baco, A. R., Chuang, E., Morrill, W., Cavanaugh, C. M., and Smith, C. R. 2000. Do mussels take wooden steps to deep-sea vents? Nature, 403:725726.CrossRefGoogle ScholarPubMed
Dominici, S., Cioppi, E., Danise, S., Betocchi, U., Gallai, G., Tangocci, F., Valleri, G., and Monechi, S. 2009. Mediterranean fossil whale falls and the adaptation of mollusks to extreme habitats. Geology, 37:815818.CrossRefGoogle Scholar
Duperron, S. 2010. The diversity of deep-sea mussels and their bacterial symbioses, p. 137167. InKiel, S.(ed.), The Vent and Seep Biota. Volume 33. Springer, Heidelberg.CrossRefGoogle Scholar
Durham, J. W. 1944. Megafaunal zones of the Oligocene of northwestern Washington. University of California Publications in Geological Sciences, 27:101212.Google Scholar
Felbeck, H., Childress, J. J., and Somero, G. N. 1981. Calvin-Benson cycle and sulphide oxidising enzymes in animals from sulphide-rich habitats. Nature, 293:291293.CrossRefGoogle Scholar
Génio, L., Johnson, S. B., Vrijenhoek, R. C., Cunha, M. R., Tyler, P. A., Kiel, S., and Little, C. T. S. 2008. New record of Bathymodiolus mauritanicus Cosel from the Gulf of Cadiz (NE Atlantic) mud volcanoes. Journal of Shellfish Research, 27:5361.CrossRefGoogle Scholar
Gill, F. L., Harding, I. C., Little, C. T. S., and Todd, J. A. 2005. Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:191209.CrossRefGoogle Scholar
Glover, E. A. and Taylor, J. D. 2007. Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae (Mollusca, Bivalvia) of New Caledonia and Lifou. Zoosystema, 29:109181.Google Scholar
Goedert, J. L. and Benham, S. R. 2003. Biogeochemical processes at ancient methane seeps: The Bear River site in southwestern Washington. Geological Society of America Field Guide, 4:201208.Google Scholar
Goedert, J. L. and Campbell, K. A. 1995. An early Oligocene chemosynthetic community from the Makah Formation, northwestern Olympic Peninsula, Washington. The Veliger, 38:2229.Google Scholar
Goedert, J. L. and Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology, 18:11821185.2.3.CO;2>CrossRefGoogle Scholar
Goedert, J. L. and Squires, R. L. 1993. First Oligocene record of Calyptogena (Bivalvia: Vesicomyidae). The Veliger, 36:7277.Google Scholar
Goedert, J. L., Squires, R. L., and Barnes, L. G. 1995. Paleoecology of whale-fall habitats from deep-water Oligocene rocks, Olympic Peninsula, Washington State. Palaeogeography, Palaeoclimatology, Palaeoecology, 118:151158.CrossRefGoogle Scholar
Goedert, J. L., Thiel, V., Schmale, O., Rau, W. W., Michaelis, W., and Peckmann, J. 2003. The late Eocene ‘Whiskey Creek' methane-seep deposit (western Washington State) Part I: Geology, palaeontology, and molecular geobiology. Facies, 48:223240.CrossRefGoogle Scholar
Gustafson, R. G. and Reid, R. G. B. 1988. Larval and post-larval morphogenesis in the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Marine Biology, 97:373387.CrossRefGoogle Scholar
Gustafson, R. G., Turner, R. D., Lutz, R. A., and Vrijenhoek, R. C. 1998. A new genus and five new species of mussels (Bivalvia: Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia, 40:63112.Google Scholar
Habe, T. 1976. New and little known bivalves of Japan. Venus, 36:113.Google Scholar
Hashimoto, J. 2001. A new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vent communities in the Indian Ocean. Venus, 60:141149.Google Scholar
Jeffreys, J. G. 1876. New and peculiar Mollusca of the Pecten, Mytilus and Arca families procured in the ‘Valorous' Expedition. Annals and Magazine of Natural History 4:424436.CrossRefGoogle Scholar
Jones, W. J., Won, Y.-J., Maas, P. A. Y., Smith, P. J., Lutz, R. A., and Vrijenhoek, R. C. 2006. Evolution of habitat use by deep-sea mussels. Marine Biology, 148:841851.CrossRefGoogle Scholar
Kenk, V. C. and Wilson, B. R. 1985. A new mussel (Bivalvia: Mytilidae) from hydrothermal vents in the Galapagos Rift Zone. Malacologia, 26:253271.Google Scholar
Kiel, S. 2006. New records and species of mollusks from Tertiary cold-seep carbonates in Washington State, U.S.A. Journal of Paleontology, 80:121137.CrossRefGoogle Scholar
Kiel, S. 2008. Fossil evidence for micro- and macrofaunal utilization of large nekton-falls: Examples from early Cenozoic deep-water sediments in Washington State, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 267:161174.CrossRefGoogle Scholar
Kiel, S. 2010a. An Eldorado for paleontologists: The Cenozoic seep deposits of western Washington State, U.S.A., p. 433448. InKiel, S.(ed.), The Vent and Seep Biota, Volume 33. Springer, Heidelberg.CrossRefGoogle Scholar
Kiel, S. 2010b. On the potential generality of depth-related ecologic structure in cold-seep communities: Cenozoic and Mesozoic examples. Palaeogeography, Palaeoclimatology, Palaeoecology, 295:245257.CrossRefGoogle Scholar
Kiel, S., Campbell, K. A., and Gaillard, C. 2010. New and little known mollusks from ancient chemosynthetic environments. Zootaxa, 2390:2648.CrossRefGoogle Scholar
Kiel, S. and Goedert, J. L. 2006a. Deep-sea food bonanzas: Early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proceedings of the Royal Society B, 273:26252631.CrossRefGoogle ScholarPubMed
Kiel, S. and Goedert, J. L. 2006b. A wood-fall association from late Eocene deep-water sediments of Washington State, U.S.A. Palaios, 21:548556.CrossRefGoogle Scholar
Kiel, S. and Goedert, J. L. 2007. Six new mollusk species associated with biogenic substrates in Cenozoic deep-water sediments in Washington State, U.S.A. Acta Palaeontologica Polonica, 52:4152.Google Scholar
Kiel, S. and Peckmann, J. 2007. Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia, 40:345357.CrossRefGoogle Scholar
Kiel, S., Peckmann, J., and Simon, K. 2013. Catshark egg capsules from a late Eocene deep-water methane-seep deposit in western Washington State, U.S.A. Acta Palaeontologica Polonica, 58.Google Scholar
Krylova, E. M., Sahling, H., and Janssen, R. 2010. Abyssogena: A new genus of the family Vesicomyidae (Bivalvia) from deep water vents and seeps. Journal of Molluscan Studies, 76:107132.CrossRefGoogle Scholar
Kuechler, R. R., Birgel, D., Kiel, S., Freiwald, A., Goedert, J. L., Thiel, V., and Peckmann, J. 2012. Miocene methane-derived carbonates from southwestern Washington, U.S.A., and a model for silicification at seeps. Lethaia, 45:259273.CrossRefGoogle Scholar
Kuroda, T. 1931. Fossil Mollusca, p. 190. InHomma, F.(ed.), Geology of the central part of Shinano, part 4. Kokon Shoin, Tokyo.Google Scholar
Levin, L. A. and Mendoza, G. F. 2007. Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Marine Ecology, 28:131151.CrossRefGoogle Scholar
Linnaeus, C. v. 1758. Systema Naturae (tenth edition). Laurrentii Salvii, Holmiae, 824p.Google Scholar
Lorion, J., Buge, B., Cruaud, C., and Samadi, S. 2010. New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia). Molecular Phylogenetics and Evolution, 57:7183.CrossRefGoogle ScholarPubMed
Lorion, J., Duperron, S., Gros, O., Cruaud, C., and Samadi, S. 2008. Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proceedings of the Royal Society B, 276:177185.CrossRefGoogle Scholar
Majima, R., Nobuhara, T., and Kitazaki, T. 2005. Review of fossil chemosynthetic assemblages in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:86123.CrossRefGoogle Scholar
McKiness, Z. P., McMullin, E. R., Fisher, C. R., and Cavanaugh, C. M. 2005. A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents. Marine Biology, 148:109116.CrossRefGoogle Scholar
Miyazaki, J.-i., Martins, L. de O., Fujita, Y., Matsumoto, H., and Fujiwara, Y. 2010. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS ONE, 5:e10363.CrossRefGoogle ScholarPubMed
Moore, E. J. 1984. Molluscan paleontology and biostratigraphy of the lower Miocene upper part of the Lincoln Creek Formation in southwestern Washington. Contributions in Science, Natural History Museum of Los Angeles County, 351:142.Google Scholar
Nesbitt, E. A., Campbell, K. A., and Goedert, J. L. 1994. Paleogene cold seeps and macroinvertebrate faunas in a forearc sequence of Oregon and Washington, p. 111. InSwanson, D. A. and Haugerud, R. A.(eds.), Geologic field trips in the Pacific Northwest. Geological Society of America, Boulder.Google Scholar
Nesbitt, E. A., Martin, R. A., Carroll, N. P., and Grieff, J. 2010. Reassessment of the Zemorrian foraminiferal stage and Juanian molluscan stage north of the Olympic Mountains, Washington State and Vancouver Island. Newsletters on Stratigraphy, 43:275291.CrossRefGoogle Scholar
Okutani, T., Fujikura, K., and Sasaki, T. 2004. Two new species of Bathymodiolus (Bivalvia: Mytilidae) from methane seeps on the Kuroshima Knoll off the Yaeyama Island, southwestern Japan. Venus, 62:97110.Google Scholar
Oliver, P. G. and Killeen, I. J. 2002. The Thyasiridae (Mollusca: Bivalvia) of the British continental shelf and North Sea oilfields. An identification manual. Studies in Marine Biodiversity and Systematics from the National Museum of Wales. BIOMÔR Reports, 3:173.Google Scholar
Peckmann, J., Goedert, J. L., Thiel, V., Michaelis, W., and Reitner, J. 2002. A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, U.S.A. Sedimentology, 49:855873.CrossRefGoogle Scholar
Peckmann, J. and Thiel, V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205:443467.CrossRefGoogle Scholar
Prothero, D. R. 2001. Chronostratigraphic calibrations of the Pacific Coast Cenozoic: A summary, p. 377394. InProthero, D. R.(ed.), Magnetic stratigraphy of the Pacific Coast Cenozoic, Volume 91. The Pacific Section SEPM.Google Scholar
Prothero, D. R., Hoffman, J. M., and Goedert, J. L. 2008. Paleomagnetism of the Oligocene and Miocene Lincoln Creek and Astoria formations, Knappton, Washington. Natural History Museum of Los Angeles County Science Series, 41:6372.Google Scholar
Rafinesque, C. S. 1815. Analyse de la nature, ou Tableau de l'univers et des corps organisées. Barraveccia, Palermo, 224p.Google Scholar
Rau, W. W. 1966. Stratigraphy and foraminifera of the Satsop River area, southern Olympic Peninsula, Washington. State of Washington Division of Mines and Geology Bulletin, 53:166.Google Scholar
Rau, W. W. 1984. The Humptulips Formation-a new Eocene formation of southwest Washington. Washington Geologic Newsletter, 12:15.Google Scholar
Rau, W. W. 1986. Geologic map of the Humptulips quadrangle and adjacent areas, Grays Harbor County, Washington. Washington State Department of Natural Resources Geologic Map, GM-33.Google Scholar
Saether, K. P., Little, C. T. S., Campbell, K. A., Marshall, B. A., Collins, M., and Alfaro, A. C. 2010. New fossil mussels (Bivalvia: Mytilidae) from Miocene hydrocarbon seep deposits, North Island, New Zealand, with general remarks on vent and seep mussels. Zootaxa, 2577:145.CrossRefGoogle Scholar
Selleck, B. W., Carr, P. F., and Jones, B. G. 2007. A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: Assessing applicability as recorders of ancient coldwater conditions. Journal of Sedimentary Research, 77:980991.CrossRefGoogle Scholar
Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A., and Deming, J. W. 1989. Vent fauna on whale remains. Nature, 341:2728.CrossRefGoogle Scholar
Snavely, P. D. Jr. 1987. Tertiary geologic framework, neotectonics, and petroleum potential of the Oregon-Washington continental margin, p. 305335. InScholl, D. W., Grantz, A., and Vedder, J. G.(eds.), Geology and resources potential of the continental margin of western North American and adjacent ocean basins-Beaufort Sea to Baja California, Volume 6. Circum-Pacific Council of Energy and Mineral Resources.Google Scholar
Snavely, P. D. Jr., Niem, A. R., MacLeod, N. S., Pearl, J. E., and Rau, W. W. 1980. Makah Formation—a deep-marginal-basin sequence of late Eocene and Oligocene age in the northwestern Olympic Peninsula, Washington. U.S. Geological Survey Professional Paper, 1162:128.Google Scholar
Squires, R. L. 1995. First fossil species of the chemosynthetic-community gastropod Provanna: Localized cold-seep limestones in upper Eocene and Oligocene rocks, Washington. The Veliger, 38:3036.Google Scholar
Squires, R. L. and Goedert, J. L. 1991. New late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. Journal of Paleontology, 65:412416.CrossRefGoogle Scholar
Squires, R. L., Goedert, J. L., and Barnes, L. G. 1991. Whale carcasses. Nature, 349:574.CrossRefGoogle Scholar
Squires, R. L. and Gring, M. P. 1996. Late Eocene chemosynthetic? bivalves from suspect cold seeps, Wagonwheel Mountain, central California. Journal of Paleontology, 70:6373.CrossRefGoogle Scholar
Suess, E., Carson, B., Ritger, S. D., Moore, J. C., Jones, M. L., Kulm, L. D., and Cochrane, G. R. 1985. Biological communities at vent sites along the subduction zone off Oregon. Bulletin of the Biological Society of Washington, 6:475484.Google Scholar
Taviani, M. 1994. The “calcari a Lucina” macrofauna reconsidered: Deep-sea faunal oases from Miocene-age cold vents in the Romagna Apennine, Italy. Geo-Marine Letters, 14:185191.CrossRefGoogle Scholar
Warén, A. and Carrozza, F. 1990. Idas ghisottii sp. n., a new mytilid bivalve associated with sunken wood in the Mediterranean. Bolletino Malacologico, 26:1924.Google Scholar
Wells, R. E. 1989. Geologic map of the Cape Disappointment—Naselle River area, Pacific and Wahkiakum Counties, Washington. U.S. Geological Survey Miscellaneous Investigations, Map I-1832.Google Scholar
Wolfe, E. W. and McKee, E. H. 1968. Geology of the Grays River Quadrangle, Wahkiakum and Pacific counties, Washington. State of Washington Department of Natural Resources, Division of Mines and Geology, Geologic Map, GM-4.Google Scholar