Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T12:37:56.445Z Has data issue: false hasContentIssue false

Diversity or disparity in the Jurassic (Upper Callovian) genus Kosmoceras (Ammonitina): A morphometric approach

Published online by Cambridge University Press:  20 May 2016

Philippe Courville
Affiliation:
Université Rennes I, UMR 6118 du CNRS, 363 Av. Général Leclerc, 35042 Rennes Cedex,
Catherine Crônier
Affiliation:
Universite des Sciences et Technologies de Lille 1, UMR 8014 et FR 1818 du CNRS, Laboratoire de Paléontologie et Paléogéographie du Paléozoïque, 59655 Villeneuve d'Ascq Cedex, France,

Abstract

A detailed morphometric approach applied to the diversity (interspecific variation)/disparity (intraspecific range of variation) was developed. It was based on outline analysis, and it was applied to 41 cross sections of Kosmoceras from the Upper Callovian of eastern France (Prusly). The cross sections represent an excellent basis for evaluation of the global shape of the shell: the main morphologic descriptors include the proportion of umbilical diameter/conch diameter and the thickness of the whorl; they also indirectly describe the ornament that influences the aspect of the whorl section. This analysis was conducted to quantify the size and shape variations and to determine the relations among some of the ‘morphological species’ defined by Tintant: K. bizeti, K. fibuliferum, K. phaienum? and K. interpositum? Numerous analyzed individuals may not belong to these categories.

The results suggest that despite a wide range of variability four main morphotypes can be ascribed a probable taxonomic status, whose mean representatives can be properly assigned to Tintant's four ‘species.’ Moreover, three of them could constitute a morphological series, continuously related through ontogeny. The fourth (K. interpositum) may be an independent species, rarely recovered in the studied area.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bookstein, F. L. 1996a. A standard formula for the uniform shape component in landmark data. NATO ASI Advanced Science Institutes Series, series A, Life Sciences, 284:153168.Google Scholar
Bookstein, F. L. 1996b. Combining the tools of geometric morphometrics. NATO ASI Advanced Science Institutes Series, series A, Life Sciences, 284:131151.Google Scholar
Brinkmann, R. 1928. Statistich-phylogenetische Untersuchungen an Ammoniten. Zeitschrift fur induktive Abstammungs und Vererbungslehre, 1:496513.Google Scholar
Brinkmann, R. 1929a. Statistich-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten. Abhandlungen der Wissenschaftlichen Gesellschaft zu Göttingen, Mathematisch-Physikalische Klasse, 13(3):1249.Google Scholar
Brinkmann, R. 1929b. Statistich-phylogenetische Untersuchungen an Ammoniten. Abhandlungen der Wissenschaftlichen Gesellschaft zu Göttingen, Mathematisch-Physikalische Klasse, 13(4):1123.Google Scholar
Buckman, S. S. 1909–1930. Yorkshire Type Ammonites. Morlay-Davies, p. 170.Google Scholar
Callomon, J. H. 1955. The ammonite succession in the Lower Oxford Clay and Kellaways Beds at Kidlington, Oxfordshire, and the zones of the Callovian stage. Philosophical Transactions of the Royal Society of London, 664:215264.Google Scholar
Callomon, J. H. 1963. Sexual dimorphism in jurassic ammonites. Transactions of the Leicester Literary and Philosophical Society, 67:1956.Google Scholar
Canfield, D. J., and Anstey, R. L. 1981. Harmonic analysis of cephalopod suture patterns. Mathematical Geology, 13:2335.Google Scholar
Cariou, E., Enay, R., Atrops, F., Hantzpergue, P., Marchand, D., and Rioult, M. 1997. Oxfordien, p. 7986. In Cariou, E. and Hantzpergue, P. (coord.), Groupe François d'Etude du Jurassique: Biostratigraphie du jurassique ouest-européen et méditerranéan: zonations parallèles et distribution des invertébrés et microfossiles. Bulletin du Centre de Recherche Elf (Exploration-Production), 17.Google Scholar
Chamberlain, J. A. Jr. 1981. Hydromechanical design of fossil cephalopods, p. 289336. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea: The Evolution, Classification, Mode of Life and Geological Usefulness of a Major Fossil Group. Environment, Ecology, and Evolutionary Change. Systematics Association Special Volume, 18, Academic Press, London.Google Scholar
Courville, P. 1993. Les formations marines et les faunes d'ammonites cénomaniennes et turoniennes (Crétacé supérieur) dans le Fossé de la Bénoué (Nigéria). Impact des facteurs locaux et globaux sur les échanges fauniques à l'interface Téthys-Atlantique Sud. Thèse de Doctorat de l'Université de Bourgogne, Dijon, 350 p.Google Scholar
Courville, P., and Bonnot, A. 1998. Faunes ammonitiques et biochronologie de la zone à Athleta et de la base de la zone à Lamberti (Callovien supérieur) de la Côte de Meuse (France). Intérêts des faunes nouvelles d'Aspidoceratidae. Revue de Paléobiologie de Genève, 17:307346.Google Scholar
Courville, P., and Collin, P.-Y. 2002. Taphonomic sequences—A new tool for sequence stratigraphy. Geology, 30:511514.Google Scholar
Courville, P., and Crônier, C. 2003. Les Kosmoceratidae autour de la limite Callovien moyen/supérieur: Histoire évolutive. Colloque “Une paléontologie biologique: Hommage au Professeur Henri Tintant.” Dijon. Résumé.Google Scholar
Courville, P., Bonnot, A., Collin, P.-Y., Contini, D., and Marchand, D. 1998. Coupures morphologiques et biochronologie chez les Kosmoceratinae de l'Est de la France (Callovien inférieur pp. à Callovien supérieur pp.). Compte Rendus de l'Académie des Sciences de Paris, 327:685691.Google Scholar
Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: Some practical considerations. Lethaia, 28:179186.Google Scholar
Crônier, C., and Courville, P. 2004. One of the richest and highly ‘endemic’ decapoda crustacean fauna from the Middle Jurassic of north-east France. Palaeontology, 47:116.Google Scholar
Crônier, C., Renaud, S., Feist, R., and Auffray, J.-C. 1998. Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida) a representative of the Late Devonian phacopine paedomorphocline: A morphometric approach. Paleobiology, 24:359370.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology, 22:219240.Google Scholar
Dommergues, J.-L., Montuire, S., and Neige, P. 2002. Size patterns through time: The case of the Early Jurassic ammonite radiation. Paleobiology, 28:423434.Google Scholar
Douvillé, R. 1915. Etudes sur les Cosmocératidés des Collections de l'Ecole Nationale Superieure des Mines et de quelques autres collections. Mémoires de la Carte géologique de la France, 175.Google Scholar
Eichwald, E. 1830. Zoologia Specialis, quam expositis animalibus tum vivis, tum fossilibus potissimum Rossiae in universum et Poloniae in specie, in usum lectionum publicarum in Universitate Caesarea Vilnensi. Volume 1. Joseph Zawadski, Vilnae, 314 p.Google Scholar
Ferson, S., Rohlf, F. J., and Koehn, R. K. 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology, 34:5968.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: A new morphometric method applied to the trilobite cranidium. Journal of Paleontology, 63:880885.Google Scholar
Foote, M. 1991. Morphologic patterns of diversification: Examples from trilobites. Palaeontology, 34:461485.Google Scholar
Gildner, R. F., and Ackerly, S. 1985. A Fourier technique for studying ammonoid sutures. Geological Society of America Abstracts with Programs, 17:592.Google Scholar
Hyatt, A. 1900. Cephalopoda, p. 502504. In Zittel-Eastman Textbook in Paleontology. I. MacMillan, New York.Google Scholar
Korn, D., and Klug, C. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology, 29:329348.Google Scholar
Kuhl, F. P., and Giardina, C. R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18:259278.CrossRefGoogle Scholar
Leckenby, J. 1859. On the Kellaway Rock of the Yorkshire Coast. Quarterly Journal of the Geological Society, 15:415.Google Scholar
MacLeod, N. 2001. Landmarks, localization, and the use of morphometrics in phylogenetic analysis, p. 197233. In Edgecombe, G., Adrain, J., and Lieberman, B. (eds.), Fossils, Phylogeny, and Form: An analytical approach. Kluwer Academic/Plenum, New York.Google Scholar
MacLeod, N. 2002. Phylogenetic signals in morphometric data, p. 100138. In MacLeod, N. and Forey, P. L. (eds.), Morphology, Shape and Phylogeny. Taylor and Francis, London.Google Scholar
Marchand, D. 1986. L'évolution des Cardioceratinae d'Europe Occidentale dans leur contexte paléobiogéographique (Callovien Supérieur-Oxfordien Moyen), Thèse de Doctorat d'Etat de l'Université de Bourgogne, Dijon, 601 p.Google Scholar
Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics, p. 95130. In Marcus, L. F., Bello, E., and Garcia-Valdecasas, A. (eds.), Contributions to Morphometrics. Museo Nacional de Ciencas Naturales, Madrid.Google Scholar
McGowan, A. J. 2004. The effect of the Permo–Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology, 30:369395.Google Scholar
Page, K. N. 1991. Ammonites, p. 86143. In Martill, D. M. and Hudson, J. D. (eds.), Fossils of the Oxford Clay. The Palaeontological Association, London.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: Coiling in ammonoids. Journal of Paleontology, 41:4365.Google Scholar
Rohlf, F. J. 1973. Algorithm 76. Hierarchical clustering using the minimum spanning tree. Computer Journal, 16:9395.Google Scholar
Rohlf, F. J., and Archie, J. W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology, 33:302317.Google Scholar
Rohlf, F. J., and Marcus, L. F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution, 8:129132.Google Scholar
Saunders, W. B., and Work, D. M. 1997. Evolution of shell morphology and suture complexity in Paleozoic prolecanitids, the rootstock of Mesozoic ammonoids. Paleobiology, 23:301325.Google Scholar
Saunders, W. B., Work, D. M., and Nikolaeva, S. 2004. The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology, 30:1943.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco, 573 p.Google Scholar
Swan, A. R. H., and Saunders, W. B. 1987. Function and shape in Late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology, 13:297311.Google Scholar
Teisseyre, L. 1884. Ein Beitrag zur Kenntniss der Cephalopoden-fauna des Ornatentone in Governement Rjasan (Russland). Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien, 88:538628.Google Scholar
Thierry, J., and Barrier, E. 2002. Middle Callovian, Map 9. In Dercourt, J. and Gaetani, M. (eds.), Atlas Peritéthys, Paleogeographical Maps. CCGM/CGMW, Paris.Google Scholar
Tintant, H. 1963. Les Kosmoceratidés du Callovien inférieur et moyen d'Europe Occidentale. Essai de paléontologie quantitative. Mémoires de l'Université de Dijon, 29:1501.Google Scholar
Tintant, H. 1977. Le polymorphisme intraspécifique en paléontologie (exemples pris chez les Ammonites). Haliotis, 6:4969.Google Scholar
Waagen, W. 1869. Die Formenreihe der Ammonites subradiatus. Geo-gnostisch-paläontologischen Beiträge, 2:179256.Google Scholar