Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:18:12.117Z Has data issue: false hasContentIssue false

Diverse labechiid stromatoporoids from the Upper Ordovician Xiazhen Formation of South China and their paleobiogeographic implications

Published online by Cambridge University Press:  10 December 2021

Juwan Jeon
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
Kun Liang*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , ,
Jino Park
Affiliation:
Department of Geology, Kangwon National University, Chuncheon, 24341 Republic of Korea
Stephen Kershaw
Affiliation:
Department of Life Sciences, Brunel University, Kingston Lane, Uxbridge, UB83PH, UK Earth Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Yuandong Zhang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
*
*Corresponding author

Abstract

A diverse labechiid stromatoporoid assemblage that includes 16 species in 8 genera was found in the Upper Ordovician Xiazhen Formation (mid–late Katian) at Zhuzhai, Jiangxi Province of South China. The assemblage is characterized by a combination of (1) North China provincial species succeeding from their origination in the Darriwilian, including Pseudostylodictyon poshanense Ozaki, 1938, Labechia shanhsiensis Yabe and Sugiyama, 1930, Labechia variabilis Yabe and Sugiyama, 1930, and Labechiella regularis (Yabe and Sugiyama, 1930) and (2) South China endemic species, including three new species (Labechia zhuzhainus Jeon n. sp., Labechiella beluatus Jeon n. sp., Sinabeatricea luteolus Jeon n. gen. n. sp.), and four species in open nomenclature (Rosenella sp., Cystostroma sp., Pseudostylodictyon sp., and Labechia sp.). The finding of Labechiella gondwanense Jeon n. sp., Stylostroma bubsense Webby, 1991, Stylostroma ugbrookense Webby, 1991, and Thamnobeatricea gouldi Webby, 1991 in the formation indicates that Tasmania was closely related to South China and had a closer paleobiogeographical relation with peri-Gondwanan terranes than with Laurentia. In addition, the occurrences of Labechia altunensis Dong and Wang, 1984 and Stylostroma species support a close biogeographic link between Tarim and South China through the Middle to Late Ordovician interval, corresponding with the results from other fossil groups such as brachiopods, conodonts and chitinozoans. The diverse labechiids from the Xiazhen Formation improve our understanding of the diversity of Ordovician stromatoporoids in peri-Gondwanan terranes and the biogeographic affinities among Australia (especially Tasmania), Tarim, and South China.

UUID: http://zoobank.org/4f46c91b-fa4c-4fe5-bea9-e409f1785677

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastian, M., Heymann, S., and Jacomy, M., 2009, Gephi: an open source software for exploring and manipulating networks: Proceedings of the International Conference on Web and Social Media, v. 8, p. 361362.CrossRefGoogle Scholar
Bian, L.Z., Fang, Y.T., and Huang, Z.C., 1996, On the types of Late Ordovician reefs and their characteristics in the neighboring regions of Zhejiang and Jiangxi provinces, South China, in Fan, J.S., ed., The Ancient Organic Reefs of China and their Relation to Oil and Gas: Beijing, Beijing Ocean Publication House, p. 5475.Google Scholar
Billings, E., 1857, Report for the year 1856, in Logan, W.E., ed., Geological Survey of Canada, Report of Progress for the Years 1853–56: Toronto, Lovell Press, p. 247– 345.Google Scholar
Bogoyavlenskaya, O.V., 1971, Ordovikskie i siluriiskie labekhiidy Tuvy [The Ordovician and Silurian Labechiidae of Tuva]: Paleontologicheskiy Zhurnal, v. 3, p. 3238.Google Scholar
Bogoyavlenskaya, O.V., 1973, Ordovikskie stromatoporoidei zapadnogo sklona Urala [Ordovician stromatoporoids of the western slope of the Urals]: Paleontologicheskiy Zhurnal, v. 1973, p. 1824.Google Scholar
Bol'shakova, L.N., and Ulitina, L.M., 1985, Stromatoporaty i biostratigrafiia nizhnego paleozoia Mongolii [Stromatoporates and biostratigraphy of lower Paleozoic of Mongolia]: Moscow, Sovmestnaia sovetsko-mongol'skaia paleontologicheskaia ekspeditsiia, Trudy 27, 87 p.Google Scholar
Bolton, T., 1988, Stromatoporoidea from the Ordovician rocks of central and eastern Canada: Geological Survey of Canada Bulletin, v. 379, p. 1745.Google Scholar
Burrett, C., Zaw, K., Meffre, S., Lai, C.K., Khositanont, S., Chaodumrong, P., Udchachon, M., Ekins, S., and Halpin, J., 2014, The configuration of Greater Gondwana–—evidence from LA ICPMS, U–Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China: Gondwana Research, v. 26, p. 3151.Google Scholar
Burrett, C., Udchachon, M., and Thassanapak, H., 2017, Palaeozoic correlations and the palaeogeography of the Sibumasu (Shan-Thai) Terrane—a brief review: Research & Knowledge, v. 2, p. 117.Google Scholar
Cameron, D., and Copper, P., 1994, Paleoecology of giant Late Ordovician cylindrical sponges from Anticosti Island, eastern Canada, in van Soest, R.W.M., van Kempen, Th.M.G., and Braekmann, J.C., eds., Sponges in Time and Space: Rotterdam, Balkema, p. 1321.Google Scholar
Carrera, M.C., and Rigby, J.K., 2004, Sponges, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 102111.Google Scholar
Chen, X.S., 1995, The Late Ordovician stromatoporoid–coral patch reef at Dashanjiao, Yushan, Jiangxi: Marine Origin Petroleum Geology, v. 2, p. 2030. [in Chinese with English abstract]Google Scholar
Chen, X.S., 1996, Patch reef of Late Ordovician stromatoporoids and corals in Yushan, Jiangxi: Oil and Gas Geology, v. 17, p. 326332. [in Chinese with English abstract]Google Scholar
Chen, X., Rong, J.Y., Qiu, J.Y., Han, N.R., Li, L.Z., and Li, S.J., 1987, Preliminary stratigraphy, sedimentologic and environmental investigation of Zhuzhai section: Journal of Stratigraphy, v. 11, p. 2334. [in Chinese with English abstract]Google Scholar
Chen, Z.Y., Kim, M.H., Choh, S.-J., Lee, D.-J., and Chen, X., 2016, Discovery of Anticostia uniformis from the Xiazhen Formation at Zhuzhai, South China and its stratigraphic implication: Palaeoworld, v. 25, p. 356361.CrossRefGoogle Scholar
Cocks, L.R.M., and Torsvik, T.H., 2021, Ordovician palaeogeography and climate change: Gondwana Research, v. 100, p. 53–72.Google Scholar
Copper, P., Stock, C.W., and Jin, J.S., 2013, Quasiaulacera, a new Hirnantian (Late Ordovician) aulaceratid stromatoporoid genus from Anticosti Island, Canada: Journal of Paleontology, v. 87, p. 664676.Google Scholar
Dai, M.J., Liu, L., Lee, D.-J., Peng, Y.B., and Miao, A.S., 2015, Morphometrics of Heliolites (Tabulata) from the Late Ordovician, Yushan, Jiangxi, South China: Acta Geologica Sinica (English Edition), v. 89, p. 3854.Google Scholar
Delgado, F., 1977, Primary textures in dolostones and recrystallized limestones: a technique for their microscopic study: Journal of Sedimentary Petrology, v. 47, p. 13391341.Google Scholar
Dong, D.-Y., 1982, Lower Ordovician stromatoporoids of northern Anhui: Acta Palaeontologica Sinica, v. 21, p. 577582. [in Chinese with English abstract]Google Scholar
Dong, D.-Y., and Wang, B.-Y., 1984, Paleozoic stromatoporoids from Xinjiang and their stratigraphic significance: Bulletin of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, v. 7, p. 237286. [in Chinese with English abstract]Google Scholar
Dronov, A.V., Kushlina, V.B., and Harper, D.A.T., 2016, A stromatoporoid trace fossil from the Upper Ordovician of the Siberian platform: ICNIA-2016: Abstract book: Castelo Branco, UNESCO Geopark Naturtejo/International Ichnological Association, p. 166167.Google Scholar
Endo, R., 1932, The Cambrian and Ordovician formations and fossils of South Manchuria: Bulletin of the United States National Museum, v. 164, 152 p.Google Scholar
Ernst, A., 2018, Diversity dynamics of Ordovician Bryozoa: Lethaia, v. 51, p. 198206.CrossRefGoogle Scholar
Etheridge, R. Jr., 1895, On the occurrence of a stromatoporoid, allied to Labechia and Rosenella in the Siluro-Devonian rocks of N.S. Wales: Records of the Geological Survey of New South Wales, v. 4, p. 134140.Google Scholar
Fang, X., Burrett, C., Li, W.J., Zhang, Y.B., Zhang, Y.D., Chen, T.E., and Wu, X.J., 2019, Dynamic variation of Middle to Late Ordovician cephalopod provincialism in the northeastern peri-Gondwana region and its implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 521, p. 127137.CrossRefGoogle Scholar
Folk, R.L., 1987, Detection of organic matter in thin-sections of carbonate rocks using a white card: Sedimentary Geology, v. 54, p. 193200.CrossRefGoogle Scholar
Galloway, J.J., 1957, Structure and classification of the Stromatoporoidea: Bulletins of American Paleontology, v. 37, p. 345480.Google Scholar
Galloway, J.J., and St. Jean, J., 1961, Ordovician Stromatoporoidea of North America: Bulletins of American Paleontology, v. 43, p. 5119.Google Scholar
Goldman, D., Maletz, J., Melchin, M.J., and Fan, J.-X., 2013, Graptolite palaeobiogeography, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic biogeography and palaeogeography: Geological Society of London Memoir 38, p. 415428.Google Scholar
Gorsky, I.I., 1938, Nekotorye Stromatoporoidea iz paleozoǐskikh otlozhenii Novoǐ Zemli [Some stromatoporoids from Paleozoic beds of Novaya Zemlya]: Trudy Arkticheskogo Instituta (Leningrad), v. 101, p. 745. [In Russian with English with translation, p. 26–41]Google Scholar
Grant, R.E., 1836, Animal kingdom, in Todd, R.B., et al. , eds., The Cyclopaedia of Anatomy and Physiology, v. 1: London, Sherwood, Gilbert & Piper, p. 107118.Google Scholar
Han, X.M., Zhang, X.Y., Yang, B.Z., Sun, J.G., Zhou, F.Q., Zhao, P.F., and Wang, Q.T., 2017, Discovery and geological significance of the coral fossils of the Yingan Formation in Keping, Xinjiang: Geological Science and Technology Information, v. 36, p. 1319. [in Chinese with English abstract]Google Scholar
Harper, D.A.T., Rasmussen, C.M.Ø., Liljeroth, M., Blodgett, R.B., Candela, Y., Jin, J.S., Percival, I.G., Rong, J.Y., Villas, E., and Zhan, R.B., 2013, Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic biogeography and palaeogeography: London, Geological Society of London Memoir 38, p. 127144.Google Scholar
Harper, D.A.T., Jin, J.S., and Rasmussen, C.M.Ø., 2014, Late Ordovician carbonate mounds from North Greenland: a peri-Laurentian dimension to the Boda Event?: GFF, v. 136, p. 9599.CrossRefGoogle Scholar
Huang, B., Zhan, R.B., and Wang, G.X., 2016, Recovery brachiopod associations from the lower Silurian of South China and their paleoecological implications: Canadian Journal of Earth Sciences, v. 57, p. 674679.CrossRefGoogle Scholar
Huang, B., Jin, J.S., and Rong, J.Y., 2018, Post-extinction diversification patterns of brachiopods in the early–middle Llandovery, Silurian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 493, p. 1119.Google Scholar
Jeon, J., Park, J., Choh, S.-J., and Lee, D.-J., 2017, Early labechiid stromatoporoids of the Yeongheung Formation (Middle Ordovician), Yeongwol Group, mideastern Korean Peninsula: part II. Systematic paleontology and paleogeographic implications: Geosciences Journal, v. 21, p. 331340.CrossRefGoogle Scholar
Jeon, J., Li, Q.J., Oh, J.-R., Choh, S.-J., and Lee, D.-J., 2019, A new species of the primitive stromatoporoid Cystostroma from the Ordovician of East Asia: Geosciences Journal, v. 23, p. 547556.CrossRefGoogle Scholar
Jeon, J., Liang, K., Park, J., Choh, S.-J., and Lee, D.-J., 2020a, Late Ordovician stromatoporoids from the Xiazhen Formation of South China: paleoecological and paleogeographical implications: Geological Journal, v. 55, p. 197209.CrossRefGoogle Scholar
Jeon, J., Liang, K., Lee, M., and Kershaw, S., 2020b, Earliest known spatial competition between stromatoporoids: evidence from the Upper Ordovician Xiazhen Formation of South China: Journal of Paleontology, v. 94, p. 110.Google Scholar
Jiang, H.X., Sun, L.Y., Bao, H.P., and Wu, Y.S., 2011, Stromatoporoids from the Ordovician reefs in the southern edge of the Ordos Basin, North China: Acta Micropalaeontologica Sinica, v. 28, 301308.Google Scholar
Kano, A., Lee, D.-J., Choi, D.K., and Yoo, C.-M., 1994, Ordovician (Llanvirnian) stromatoporoids from the Youngwol Area, southern Korea: Transactions and Proceedings of the Palaeontological Society of Japan, new ser., v. 174, p. 449457.Google Scholar
Kapp, U.S., and Stearn, C.W., 1975, Stromatoporoids of the Chazy Group (Middle Ordovician), Lake Champlain, Vermont and New York: Journal of Paleontology, v. 49, p. 163186.Google Scholar
Karimova, F.S., and Lesovaya, A.I., 2007, Stromatoporoids, in Kim, A.I., Salimova, F.A., Kim, I.A., and Meshchankina, N.A., eds., Palaeontological Atlas of Phanerozoic Faunas and Floras of Uzbekistan, v. 1: Tashkent, Republic of Uzbekistan State Committee on Geology and Mineral Resources, p. 2829.Google Scholar
Khalfina, V.K., 1960, Otriad Stromatoporoidei: Ordovikskaia sistema [Order Stromatoporoidea: Ordovician System], in Khalfina, L. L., ed., Biostratigrafiia Paleozoia Saiano-Altaǐskoǐ Gornoǐ Oblasti, Tom I: Nizhniǐ Paleozoǐ [Paleozoic Biostratigraphy of the Sayan-Altai Mountain Region, vol. I: Lower Paleozoic]: Sibirskogo Nauchno-issedovatel'skogo Instituta Geologii, Geofiziki i Mineral'nogo Syr'ia, Trudy 19, p. 370373.Google Scholar
Khalfina, V.K., and Yavorsky, V.I., 1973, Klassificatsiia stromatoporoidea [Classification of the stromatoporoids]: Paleontologicheskiy Zhurnal, v. 1973, no. 2, p. 1934.Google Scholar
Khromykh, V.G., 2001, Novye stromatoporoidei iz verkhnego ordovika Taimyra [New Upper Ordovician Stromatopororoidea from Taimyr]: Paleontologicheskiy Zhurnal, v. 35, p. 1115.Google Scholar
Kiel, S., 2017, Using network analysis to trace the evolution of biogeography through geologic time: a case study: Geology, v. 45, p. 711714.Google Scholar
Kühn, O., 1927, Zur Systematik und Nomenklatur der Stromatoporen: Zentralblatt für Mineralogie, Geologie und paläontologie (Abteilung B), v. 1927, p. 546551.Google Scholar
Kwon, S.W., Park, J., Choh, S.-J., Lee, D.C., and Lee, D.-J., 2012, Tetradiid–siliceous sponge patch reefs from the Xiazhen Formation (late Katian), southeast China: a new Late Ordovician reef association: Sedimentary Geology, v. 267, p. 1524.CrossRefGoogle Scholar
Lee, D.-C., 2013, Late Ordovician trilobites from the Xiazhen Formation in Zhuzhai, Jiangxi Province, China: Acta Palaeontologica Polonica, v. 58, p. 855882.Google Scholar
Lee, D.-C., et al. , 2012, Revised stratigraphy of the Xiazhen Formation (Upper Ordovician) at Zhuzhai, South China, based on palaeontological and lithological data: Alcheringa, v. 36, p. 387404.CrossRefGoogle Scholar
Lee, D.-C., Choh, S.-J., Lee, D.-J., Ree, J.-H., and Lee, J.-H., 2017, Where art thou “the great hiatus?”—review of Late Ordovician to Devonian fossil-bearing strata in the Korean Peninsula and its tectonostratigraphic implications: Geosciences Journal, v. 21, p. 913931.CrossRefGoogle Scholar
Lee, M., Elias, R. J., Choh, S.-J., and Lee, D.-J., 2016a, Insight from early coral–stromatoporoid intergrowth, Late Ordovician of China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 463, p. 192204.CrossRefGoogle Scholar
Lee, M., Park, H., Tien, N. V., Choh, S.-J., Elias, R.J., and Lee, D.-J., 2016b, A new species of Amsassia from the Ordovician of Korea and South China: paleobiological and paleogeographical significance: Acta Geologica Sinica (English Edition), v. 90, p. 796806.CrossRefGoogle Scholar
Lee, M., Elias, R. J., Choh, S.-J., and Lee, D.-J., 2019, Palaeobiological features of the coralomorph Amsassia from the Late Ordovician of South China: Alcheringa, v. 43, p. 1832.CrossRefGoogle Scholar
Li, Q.J., Li, Y., and Kiessling, W., 2015, The first sphinoctozoan-bearing reef from an Ordovician back-arc basin: Facies, v. 61, art. 17, https://doi.org/10.1007/s10347-015-0444-6Google Scholar
Li, Q.J., Li, Y., and Kiessling, W., 2017, The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge–Calathium reefs: Lethaia, v. 50, p. 140148.CrossRefGoogle Scholar
Li, Y., Kershaw, S., and Mu, X.N., 2004, Ordovician reef systems and settings in South China before the Late Ordovician mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 205, p. 235254.CrossRefGoogle Scholar
Liang, K., Elias, R.J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2016, Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China: Journal of Paleontology, v. 90, p. 10271048.CrossRefGoogle Scholar
Lin, B.-Y., and Webby, B.D., 1988, Clathodictyid stromatoporoids from the Ordovician of China: Alcheringa, v. 12, p. 233247.Google Scholar
Lin, B.-Y., and Webby, B. D., 1989, Biogeographic relationships of Australian and Chinese corals and stromatoporoids: Memoir of the Association of Australasian Palaeontologists, v. 8, p. 207217.Google Scholar
Lonsdale, W., 1839, Corals, in Murchison, R.I., ed., The Silurian System, Part 2: London, John Murray, p. 675694.Google Scholar
Milne-Edwards, H.M., and Haime, J., 1851, Monographic des polypiers fossils des terraines paleozoïques. Première Partie. Distribution Méthodique de la classe des polypes, tome 5: Paris, Achives du Muséum d'Histoire naturelle, 502 p.Google Scholar
Mu, E.Z., Li, J.J., Ge, M.Y., Chen, X., Lin, Y.K., and Ni, Y.N., 1993, Upper Ordovician graptolites of central China region: Palaeontologia Sinica, ser. B, v. 29, p. 1393. [in Chinese with English summary]Google Scholar
Nestor, H., 1960, Plurnatalinia: Novyi rod otriada Stromatoporoidea iz verkhnego ordovika Estonskoi SSR [Plurnatalinia: a new genus of Stromatoporoidea from the Upper Ordovician of the Estonian SSR]: Izvestiya Akademii Nauk Estinskoi SSR, Seriya Fiziko-Matematicheskikh i Tekhnicheskikh Nauk, v. 9, p. 225228.Google Scholar
Nestor, H., 1964, Stromatoporoidei Ordovika i Llandoveri Estoniï [Ordovician and Llandoverian Stromatoporoidea of Estonia]: Tallinn, Akademiia Nauk Estonskoi SSR, Institut Geologii, 112 p.Google Scholar
Nestor, H., 1976, Rannepaleozoiskie stromatoporoidei basseina reki Moiero: Sever Sibirskoi platformy [Early Paleozoic stromatoporoids from the Moiero River: north of the Siberian Platform]: Tallinn, Akademiia Nauk Estonskoi SSR, Institut Geologii, 95 p.Google Scholar
Nestor, H., and Stock, C.W., 2001, Recovery of the stromatoporoid fauna after the Late Ordovician extinction, in Ezaki, Y., Mori, K., Sugiyama, T., and Sorauf, J.E., eds., Proceedings of the 8th International Symposium on Fossil Cnidaria and Porifera, September 12–16, 1999: Bulletin of the Tohoku Imperial University Museum, Sendai, Japan, p. 333341.Google Scholar
Nestor, H., and Webby, B.D., 2013, Biogeography of the Ordovician and Silurian Stromatoporoidea, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic biogeography and palaeogeography: Geological Society of London Memoir 38, p. 6779.Google Scholar
Nestor, H., Copper, P., and Stock, C., 2010, Late Ordovician and Early Silurian Stromatoporoid Sponges from Anticosti Island, Eastern Canada: Crossing the O/S Mass Extinction Boundary: Ottawa, National Research Council Press, 152 p.Google Scholar
Nicholson, H.A., 1879, On the structure and affinities of the “Tabulate Corals” of Palaeozoic Period: Edinburgh, William Blackwood and Sons, 342 p.CrossRefGoogle Scholar
Nicholson, H.A., 1886a, A Monograph of the British Stromatoporoids. Part I, General Introduction, v. 39: London, Palaeontographical Society, 130 p.Google Scholar
Nicholson, H.A., 1886b, On some new and imperfectly known species of stromatoporoids, part 2: Annals and Magazine of Natural History, ser. 5, v. 18, p. 822.Google Scholar
Nicholson, H.A., and Murie, J., 1878, On the minute structure of Stromatopora and its allies: Zoological Journal of the Linnaean Society, v. 14, p. 187246.Google Scholar
Ozaki, K.E., 1938, On some stromatoporoids from the Ordovician limestone of Shantung and South Manchuria: Journal of the Shanghai Science Institute, v. 2, p. 205223.Google Scholar
Park, J., Lee, J.-H., Hong, J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2017, Crouching shells, hidden sponges: unusual Late Ordovician cavities containing sponges: Sedimentary Geology, v. 347, p. 19.CrossRefGoogle Scholar
Park, J., Lee, J.-H., Liang, K., and Choh, S.-J., 2021, Faceis analysis of the Upper Ordovician Xiazhen Formation, southeast China: implications for carbonate platform development in South China prior to the onset of the Hirnantian glaciation : Facies, v. 67, art. 18, https://doi.org/10.1007/s10347-021-00626-zCrossRefGoogle Scholar
Percival, I.G., Webby, B.D., and Pickett, J.W., 2001, Ordovician (Bendigonian to Eastonian) invertebrate faunas from the northern Molong Volcanic Belt of central New South Wales: Alcheringa, v. 25, p. 211250.Google Scholar
Pickett, J., and Percival, I.G., 2001, Ordovician faunas and biostratigraphy in the Gunningbland area, central New South Wales, Australia: Alcheringa, v. 25, p. 952.CrossRefGoogle Scholar
Plummer, J.T., 1843, Suburban geology, or rocks, soil and water about Richmond, Wayne County, Indiana: American Journal of Science, v. 44, p. 293294.Google Scholar
Pohl, A., Nardin, E., Vandenbroucke, T.R., and Donnadieu, Y., 2016, High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 458, p. 3951.CrossRefGoogle Scholar
Raymond, P.E., 1931, Further notes on Beatricea-like organisms: Bulletin Museum of Comparative Zoology, Geological Series, v. 9, p. 177184.Google Scholar
Rojas, A., Patarroyo, P., Mao, L., Bengtson, P., and Kowalewski, M., 2017, Global biogeography of Albian ammonoids: a network-based approach: Geology, v. 45, p. 659660.Google Scholar
Servais, T., and Harper, D.A.T., 2018, The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration: Lethaia, v. 51, p. 151164.Google Scholar
Servais, T., Danelian, T., Harper, D.A.T, and Munnecke, A., 2014, Possible oceanic circulation patterns, surface water currents and upwelling zones in the Early Palaeozoic: GFF, v. 136, p. 229233.CrossRefGoogle Scholar
Sidor, C.A., Vilhena, D.A., Angielczyk, K.D., Huttenlocker, A.K., Nesbitt, S.J., Peecook, B.R., Steyer, J.S., Smith, R.M.H., and Tsuji, L.A., 2013, Provincialization of terrestrial faunas following the end-Permian mass extinction: Proceedings of the National Academy of Sciences of the United Stated of America, v. 110, p. 81298133.CrossRefGoogle ScholarPubMed
Sproat, C.D., and Zhan, R., 2019, Paleogeographic and paleoecological significance of Schachriomonia (Brachiopoda) from the Upper Ordovician of the Tarim Basin, Northwest China: Journal of Paleontology, v. 93, p. 10751087.Google Scholar
Stock, C.W., Nestor, H., and Webby, B.D., 2015, Paleobiogeography of the Paleozoic Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. E653E689.Google Scholar
Sugiyama, T., 1941, On a new form of the genus Labechiellata from Tyosen (Korea): Journal of the Geological Society of Japan, v. 48, p. 7577.Google Scholar
Sun, N., Elias, R.J., Choh, S.-J., Lee, D.-C., Wang, X.-L., and Lee, D.-J., 2016, Morphometrics and palaeoecology of the coral Agetolites from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China: Alcheringa, v. 40, p. 251274.CrossRefGoogle Scholar
Tang, P., Wang, Y., Xu, H.-H., Jiang, Q., Yang, Z.-L., Zhan, J.-Z., and Zhang, X.-L., 2017, Late Ordovician (late Katian) cryptospores and chitinozoans from the Mannan-1 borehole, south Tarim Basin, China: Palaeoworld, v. 26, p. 5063.Google Scholar
Torsvik, T.H., and Cocks, L.R.M., 2017, Earth History and Palaeogeography: Cambridge, Cambridge University Press, 317 p.Google Scholar
Wang, Z.H., Qi, Y.P., and Bergström, S.M., 2007, Ordovician conodonts of the Tarim Region, Xinjiang, China: occurrence and use as palaeoenvironment indicators: Journal of Asian Earth Sciences, v. 29, p. 832843.Google Scholar
Webby, B.D., 1969, Ordovician stromatoporoids from New South Wales: Palaeontology, v. 12, p. 637662.Google Scholar
Webby, B.D., 1971, Alleynodictyon, a new Ordovician stromatoporoid from New South Wales: Palaeontology, v. 14, p. 1015.Google Scholar
Webby, B.D., 1977, Labechia aldonensis sp. nov., an Ordovician stromatoporoid from Scotland: Geological Magazine, v. 115, p. 5356.Google Scholar
Webby, B.D., 1979a, Ordovician stromatoporoids from the Mjøsa district, Norway: Norsk Ggeologisk Tidsskrift, v. 59, p. 199211.Google Scholar
Webby, B.D., 1979b, The oldest Ordovician stromatoporoids from Australia: Alcheringa, v. 3, p. 237251.CrossRefGoogle Scholar
Webby, B.D., 1979c, The Ordovician stromatoporoids: Proceedings of the Linnean Society of New South Wales, v. 103, p. 83121.Google Scholar
Webby, B.D., 1980, Biogeography of Ordovician stromatoporoids: Paleogeography, Palaeoclimatology, Paleoecology, v. 32, p. 119.CrossRefGoogle Scholar
Webby, B.D., 1991, Ordovician stromatoporoids from Tasmania: Alcheringa, v. 15, p. 191227.CrossRefGoogle Scholar
Webby, B.D., 1992, Global biogeography of Ordovician corals and stromatoporoids, in Webby, B.D., and Laurie, J.R., eds., Global Perspectives on Ordovician Geology: Rotterdam, Balkema, p. 261276.Google Scholar
Webby, B.D., 1993, Evolutionary history of Palaeozoic Labechiida (Stromatoporoidea): Memoirs of the Association of Australasian Palaeontologists, v. 15, p. 5767.Google Scholar
Webby, B.D., 1994, Evolutionary trends in Ordovician stromatoporoids: Courier Forschungsinstitut Senckenberg, v. 172, p. 373380.Google Scholar
Webby, B.D., 2002, Patterns of Ordovician reef development, in Kiessling, W., Flügel, E., and Golonka, J., eds., Phanerozoic Reef Patterns: Tulsa, SEPM Special Publication 72, p. 129179.CrossRefGoogle Scholar
Webby, B.D., 2004, Stromatoporoids, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 112118.Google Scholar
Webby, B.D., 2015a, Early evolution of the Paleozoic Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 575592.Google Scholar
Webby, B.D., 2015b, Glossary of terms applied to the hypercalcified Porifera, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 397416.Google Scholar
Webby, B.D., 2015c, Labechiida: systematic descriptions, in Selden, P.A., ed., Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Volume 4–5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 709754.Google Scholar
Webby, B.D., Wyatt, D., and Burrett, C., 1985, Ordovician stromatoporoids from the Langkawi Islands, Malaysia: Alcheringa, v. 9, p. 159166.CrossRefGoogle Scholar
Webby, B.D., et al. , 2000, Ordovician paleobiogeography of Australasia: Memoir of the Association of Australasian Palaeontologists, v. 23, p. 63126.Google Scholar
Yabe, H., and Sugiyama, T., 1930a, On some Ordovician stromatoporoids from south Manchuria, North China and Choseon (Corea), with notes on two new European forms: Tohoku Imperial University, Science Report (Series 2, Geology), v. 14, p. 4762.Google Scholar
Yabe, H., and Sugiyama, T., 1930b, Notes on two stromatoporoids from Chosen (Corea): Japanese Journal of Geology and Geography, v. 8, p. 910.Google Scholar
Yavorsky, V.I., 1955, Stromatoporoidea Sovetskogo Soyuza, chast' pervaya, prilozhenie k chasti pervoy [Stromatoporoidea of the Soviet Union, part 1 and supplement to part 1]: Vsesoiuznogo Nauchno-Issledovatel'skogo Geologicheskogo Instituta (VSEGEI), Trudy, new ser., v. 8, 173 p.Google Scholar
Yavorsky, V.I., 1961, Stromatoporoidea Sovetskogo Soyuza, chast' tret'ya [Stromatoporoidea of the Soviet Union, part 3]. Vsesoiuznogo NauchnoIssledovatel'skogo Geologicheskogo Instituta (YSEGEI), Trudy, new ser., v. 44, 64 p.Google Scholar
Zenger, D.H., 1979, Primary textures in dolostones and recrystallized limestone: a technique for their microscopic study: discussion: Journal of Sedimentary Petrology, v. 49, p. 677678.Google Scholar
Zhang, F., 2016, Recognizing morphospecies in the heliolitid coral Plasmoporella: Palaeoworld, v. 25, p. 3242.CrossRefGoogle Scholar
Zhang, M., Xia, F.-S., Taylor, P.D., Liang, K., and Ma, J.-Y., 2018, Upper Ordovician bryozoans from the Xiazhen Formation of Yushan, northeastern Jiangxi, East China: Palaeoworld, v. 27, p. 343359.CrossRefGoogle Scholar
Zhang, Y.D., Chen, X., Yu, G.H., Goldman, D., and Liu, X., 2007, Ordovician and Silurian rocks of northwest Zhejiang and northeast Jiangxi provinces, SE China: Hefei, University of Science and Technology of China Press, 189 p.Google Scholar
Zhen, Y.Y., Percival, I.G., Liu, J.B., and Zhang, Y.D., 2009, Conodont fauna and biostratigraphy of the Honghuayuan Formation (Early Ordovician) of Guizhou, South China: Alcheringa, v. 33, 257295.CrossRefGoogle Scholar
Zhen, Y.Y., Burrett, C.F., Percival, I.G., and Lin, B.Y., 2010, A Late Ordovician conodont fauna from the Lower Limestone Member of the Benjamin Limestone in central Tasmania, and revision of Tasmanognathus careyi Burrett, 1979: Proceedings of the Linnean Society of New South Wales, v. 131, p. 4372.Google Scholar