Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T07:53:22.413Z Has data issue: false hasContentIssue false

Dianulites Eichwald, 1829: An unusual Ordovician bryozoan with a high-magnesium calcite skeleton

Published online by Cambridge University Press:  20 May 2016

Paul D. Taylor
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, England
Mark A. Wilson
Affiliation:
Department of Geology, The College of Wooster, Wooster, Ohio 44691

Abstract

The ‘granular’ wall microstructure of the Ordovician stenolaemate bryozoan Dianulites Eichwald, 1829, has been studied using ultrathin sections, scanning electron microscopy (SEM), analytical SEM, and cathodoluminescence. The timing of recrystallization and the presence of microdolomite inclusions in the skeletal walls implies that the original skeleton consisted of high-magnesium calcite (HMC). Although found in some modern cheilostomes, HMC has not been recorded in living stenolaemate bryozoans, but appears to have also been present in Nicholsonella and a few other Ordovician genera traditionally assigned to the trepostomes or cystoporates. The Russian type species of Dianulites, D. fastigiatus Eichwald, 1829, is revised and recorded for the first time in North America from the Fillmore Formation (Lower Ordovician) of Utah. Unusually among bryozoans, D. fastigiatus has turbinate, cone- or horn-shaped colonies, straight to slightly curved, with zooids opening on the flat, broad end of the cone; the sides of the cone comprise calcified exterior walls. This growth-form resembles some solitary rugose corals and other benthic animals thought to have lived with all but their tops buried in soft sediment. Such an interpretation is supported in Dianulites by the scarcity of epibionts on the exterior walls of the cone and by the occurrence of specimens comprising stacks of subcolonies, suggesting periods of partial burial of the living tissues by sediment.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstey, R. L. and Pachut, J. F. 1995. Phylogeny, diversity history, and speciation in Paleozoic bryozoans, p. 239284. In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York.Google Scholar
Astrova, G. G. 1964. [A new order of Paleozoic Bryozoa.] Paleontologicheskii Zhurnal, 2:2231.Google Scholar
Astrova, G. G. 1965. [Morphology, history of development and the system of Ordovician and Silurian bryozoans.] Academia Nauk CCCP, Moscow, 432 p.Google Scholar
Astrova, G. G. 1978. [The history of development, system, and phylogeny of the Bryozoa. Order Trepostomata.] Trudy Paleontologicheskogo Instituta, 169:1240.Google Scholar
Bassler, R. S. 1911. The Early Paleozoic Bryozoa of the Baltic Provinces. U.S. National Museum Bulletin 77, 382 p.Google Scholar
Blake, D. F., Peacor, D. R., and Wilkinson, B. H. 1982. The sequence and mechanism of low-temperature dolomite formation: calcian dolomites in a Pennsylvanian echinoderm. Journal of Sedimentary Petrology, 52:5970.Google Scholar
Budd, D. A. 1992. Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization. Carbonates and Evaporites, 7:7481.Google Scholar
Budd, D. A. and Hiatt, E. E. 1993. Mineralogical stabilization of high-magnesium calcite: geochemical evidence for intracrystal recrystallization within Holocene porcellaneous foraminifera. Journal of Sedimentary Petrology, 63:261274.Google Scholar
Dybowski, . 1877. Die Chaetetiden der Ostbaltischen Silur-form. Dorpat, 134 p.Google Scholar
Eichwald, E. 1829. Zoologia specialis quam expositis animalibus tum vivis, tum fossilibus potissimum Rossiae in universum, et Polonia in specie, 1:1314.Google Scholar
Eichwald, E. 1860. Lethaea Rossica, ou Paléontologie de la Russie, 1:335494.Google Scholar
Eichwald, E. 1861. Paleontologiya Rossii. Drevnii Period. II. Fauna Grauvakkovoi, Gornoizvestkovoi i Medistoslantevatoi Formatsii Rossii. Golike: St. Petersburg, 521 p. (In Russian)Google Scholar
Elias, R. J. 1984. Paleobiology of solitary rugose corals, Late Ordovician of North America, p. 533537. Palaeontographica Americana, 54:533537.Google Scholar
Elias, R. J. and Buttler, C. J. 1986. Late Ordovician solitary rugose corals preserved in life position. Canadian Journal of Earth Sciences, 24:806812.Google Scholar
Elias, R. J., Zeilstra, R. G., and Bayer, T. N. 1988. Paleoenvironmental reconstruction based on horn corals, with an example from the Late Ordovician of North America. Palaios, 3:2234.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., and Rushton, A. W. A. 1995. A revision of Ordovician series and stages from the historical type area. Geological Magazine, 132:1530.Google Scholar
Gordon, D. P. and Taylor, P. D. 1997. The Cretaceous-Miocene genus Lichenopora (Bryozoa), with a description of a new species from New Zealand. Bulletin of the Natural History Museum of London (Geology), 53:7178.Google Scholar
Goryunova, R. V. 1988. On the systematic position of the genus Revalotrypa (Bryozoa). Paleontological Journal, 1988:2733.Google Scholar
Goryunova, R. V. 1992. [Morphology and system of the Paleozoic bryozoans.] Trudy Paleontologicheskogo Instituta, 251:1168.Google Scholar
Healey, N. D., and Utgaard, J. 1979. Ultrastructure of the skeleton of the cystoporate bryozoans Ceramophylla, Crassaluna and Cystodictya, p. 179194. In Larwood, G. P. and Abbott, M. B. (eds.), Advances in Bryozoology. Systematic Association Special Volume 13. Academic Press, London and New York.Google Scholar
Hickey, D. R. 1987. Skeletal structure, development and elemental composition of the Ordovician trepostome bryozoan Peronopora. Palaeontology, 30:691716.Google Scholar
Johnson, R. E., and Walker, K. R. 1986. Mineralogy and diagenesis of Paleozoic Bryozoa with originally unstable mineralogy. Geological Society of America Abstracts with Programs, 18:648.Google Scholar
Lohmann, K. C., and Meyers, W. J. 1977. Microdolomite inclusions in cloudy prismatic calcites: a proposed criterion for former high-magnesium calcites. Journal of Sedimentary Petrology, 47:10781088.Google Scholar
Männil, R. M. 1961a. [On the morphology of the hemisphaeric zoaria of Trepostomata (Bryozoa)]. Trudy Instituta Geologii Estonskoi, 6:113140.Google Scholar
Männil, R. M. 1961b. The stratigraphical distribution and importance of Bryozoa in the Ordovician of Estonia. Eesti NSV Teaduste Akadeemia Loodusuurijate Selts, Geoloogilised märkmed, 1:514.Google Scholar
McKinney, F. K. 1969. Bibliography and list (1900-1965) of the families Constellariidae and Dianulitidae (Ectoprocta, Order Cystoporata). Southeastern Geology, 10:175184.Google Scholar
McKinney, F. K. 1971. Trepostomatous Ectoprocta (Bryozoa) from the Lower Chickamauga Group (Middle Ordovician), Wills Valley, Alabama. Bulletins of American Paleontology, 60:195337.Google Scholar
McLeod, J. D. 1978. The oldest bryozoans: new evidence from the Early Ordovician. Science, 200:771773.Google Scholar
Mecker, H. 1981. Fossile Bryozoen. Abbildungen und Beschreibungen dieser Fossilien aus dem Geschiebe nordischen und baltischen Ursprungs sowie deren Antehenden. Privately published, Hamburg, 266 p.Google Scholar
Modzalevskaya, E. A. 1953. [Ordovician trepostomes of the Baltic region and their stratigraphical interest.] Sbornik vsesojuznyi nauč cno-issledotel'skyj geologorazvedočnyj institut (VNIGRI) Nov. ser., 78:91167.Google Scholar
Modzalevskaya, E. A. 1955. [Colonies of Ordovician bryozoans and the dependence of their form on the conditions of their existence.] Voprosy Paleontologii, 2:125135.Google Scholar
Neuman, B. E. E. 1988. Some aspects of life strategies of Early Palaeozoic rugose corals. Lethaia, 21:97114.Google Scholar
Nickles, J. M. and Bassler, R. S. 1900. A synopsis of American fossil Bryozoa including bibliography and synonymy. Bulletin of the United States Geological Survey, 173:1663.Google Scholar
Palmer, T. J., Hudson, J. D., and Wilson, M. A. 1988. Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature, 335:809810.CrossRefGoogle Scholar
Ropot, V. F., and Pushkin, V. I. 1987. Ordovician of Byelorussia. Nauka and Technica, Minsk, 234 p.Google Scholar
Sandberg, P. A. 1975. Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. Journal of Paleontology, 49:587606.Google Scholar
Sandberg, P. A. 1983a. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305:1922.CrossRefGoogle Scholar
Sandberg, P. A. 1983b. Ultrastructure and skeletal development in cheilostome Bryozoa, p. G238G286. In Boardman, R. S. et al. (eds.), Treatise on Invertebrate Paleontology. Part G, Bryozoa, revised 1. Geological Society of America and University of Kansas Press, New York and Lawrence, Kansas.Google Scholar
Sandberg, P. A. 1984. Recognition criteria for calcitized skeletal and non-skeletal aragonites. Palaeontographica Americana, 54:272281.Google Scholar
Savazzi, E. 1982. Adaptations to tube dwelling in the Bivalvia. Lethaia, 15:275297.Google Scholar
Scrutton, C. 1998. The Palaeozoic corals, II: structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society, 52:157.CrossRefGoogle Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27:207237.Google Scholar
Spjeldnaes, N. 1996. Bryozoan colonies as indicators of bottom conditions in the Lower Ordovician, p. 315319. In Gordon, D. P., Smith, A. M., and Mackie, J. A. (eds.), Bryozoans in Space and Time. Proceedings of the 10th International Bryozoology Conference, Wellington, New Zealand. National Institute of Water and Atmospheric Research Ltd., Wellington, New Zealand.Google Scholar
Swan, A. R. H., and Kershaw, S. 1994. Computer model for skeletal growth of stromatoporoids. Palaeontology, 37:409423.Google Scholar
Towe, K. M., and Hemleben, C. 1976. Diagenesis of magnesian calcite: evidence from miliolacean foraminifera. Geology, 4:337339.Google Scholar
Turner, J. V., Anderson, T. F., Sandberg, P. A., and Goldstein, S. J. 1986. Isotopic, chemical and textural relations during the experimental alteration of biogenic high-magnesian calcite. Geochimica et Cosmochimica Acta, 50:495506.Google Scholar
Ulrich, E. O. 1882. American Palaeozoic Bryozoa. Journal of the Cincinnati Society of Natural History, 5:121175.Google Scholar
Utgaard, J. 1983. Paleobiology and taxonomy of the Order Cystoporata, p. G327G357. In Boardman, R. S. et al. (eds.), Treatise on Invertebrate Paleontology. Part G, Bryozoa, revised 1. Geological Society of America and University of Kansas Press, New York and Lawrence, Kansas.Google Scholar
Vinassa de Regny, P. E. 1921. Sulla classificazione dei trepostomidi. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale, 59:212231.Google Scholar
Weedon, M. J., and Taylor, P. D. 1997. Skeletal ultrastructure in some tubuliporine cyclostome bryozoans. Acta Zoologica, 78:107122.Google Scholar