Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T16:59:15.227Z Has data issue: false hasContentIssue false

Devonian cladid crinoids: Families Glossocrinidae Goldring, 1923, and Rutkowskicrinidae new family

Published online by Cambridge University Press:  20 May 2016

George C. McIntosh*
Affiliation:
Rochester Museum & Science Center, 657 East Avenue, Rochester, New York 14607,

Abstract

The cladid crinoid order Poteriocrinida Jaekel, 1918 is a polyphyletic group that includes a variety of independent lineages united solely by the presence of ramulate or pinnulate arms. One of these lineages is the Rutkowskicrinidae new family herein assigned to the order Dendrocrinida, Bather 1899. Genera assigned to this new family include Rutkowskicrinus new genus, Decorocrinus new genus, Iteacrinus, Nassoviocrinus, Quantoxocrinus, Sacrinus, Sostronocrinus, ?Propoteriocrinus, and ?Schmidtocrinus. Members of this family are characterized by low conical cups with ridged thecal plates, U-shaped peneplenary radial facets bearing faint transverse ridges, a proximal median ridge on the posterior side of a long, narrow, predominantly straight anal sac, and pentagonal columns with one to two cirri per nodal. Arms in this family are highly variable, ranging from isotomous to heterotomous and pinnulate. The arms in the type specimen of Rutkowskicrinus patriciae n. sp. preserve all these various arm stages. The oldest presently known rutkowskicrinids occur in the Late Silurian (Ludlovian) of Australia and the Early Devonian (Pragian) of western Europe. The family diversified during the Middle Devonian (Givetian) in northeastern North America, and declined in numbers and diversity throughout the Late Devonian before going extinct in the Early Mississippian (Tournaisian).

The Glossocrinidae Goldring, 1923, containing Glossocrinus, Charientocrinus, Catactocrinus, and Liparocrinus, is also reviewed. This family, distinguished by a strongly recumbent anal sac in the B-E plane and a prominent median ridge extending the entire length of the anal sac, was derived from the Rutkowskicrinidae during the Middle Devonian (Givetian) and diversified in the Late Devonian before going extinct at the Frasnian-Famennian boundary.

The previously described rutkowskicrinid and glossocrinid genera listed above were assigned by Moore et al. (1978) to the dendrocrinid family Mastigocrinidae and poteriocrinid families Rhenocrinidae, Poteriocrinitidae, and Scytalocrinidae. Studied taxa include Rutkowskicrinus patriciae new genus and species, Rutkowskicrinus collieri new genus and species, Nassoviocrinus costatus (Goldring, 1954) new combination, Nassoviocrinus schultzei (Haarmann, 1921) new combination, Nassoviocrinus? duluki (Kesling, 1969) new combination, Nassoviocrinus? ornatus (Goldring, 1954) new combination, Nassoviocrinus? chilmanae new species, Decorocrinus arkonensis (Goldring, 1950) new combination, Decorocrinus cooperi (Goldring, 1926) new combination, Quantoxocrinus clarkei (Williams, 1882) new combination, Glossocrinus halli (Goldring, 1923) new combination, and Charientocrinus bellitubatus (Kesling, 1973) new combination.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1998. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the crinoidea. The University of Kansas Paleontological Contributions, New Series, 9, 36 p.Google Scholar
Bassler, R. S., and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Papers, 45, 734 p.Google Scholar
Bather, F. A. 1899. A phylogenetiuc classification of the Pelmatozoa. British Association for the Advancement of Science, Report for 1898, p. 916922.Google Scholar
Bather, F. A. 1900. The Echinodermata. Crinoidea, p. 94204. In Lankester, E. R. (ed.), A Treatise on Zoology, Pt. 3, Adam and Charles Black, London.Google Scholar
Baumiller, T. K. 1992. Major extinction events in the record of Paleozoic crinoids: new metrics for measuring extinction intensities. Geological Society of America Abstracts with Programs, 24.A95.Google Scholar
Belanski, C. H. 1928. Description of some typical fossils of the Shellrock Stage. The American Midland Naturalist, 11:171212.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1994. Depositional sequences, cycles, and foreland basin dynamics in the late Middle Devonian (Givetian) of the Genesee Valley and Western Finger Lakes region, p. 505568. In Brett, C. E. and Scatterday, J. (eds.), Field Trip Guidebook for New York State Geological Association 66th annual meeting, 590 p.Google Scholar
Brett, C. E., and Seilacher, A. 1991. Fossil Lagerstätten: A Taphonomic Consequence of Event Sedimentation, p. 283297. In Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events In Stratigraphy. Springer-Verlag, Berlin and New York.Google Scholar
Brett, C. E., Baird, G. C., and Speyer, S. E. 1997. Fossil Lagerstätten: Stratigraphic Record of Paleontological and Taphonomic Events, p. 340. In Brett, C. E. and Baird, G. C. (eds.), Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. Columbia University Press, New York.Google Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L. 1997. Echinoderm taphonomy, taphofacies, and Lagerstätten p. 147190. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of echinoderms. The Paleontological Society Papers, 3.Google Scholar
Brett, C. E., Speyer, S. E., and Baird, G. C. 1986. Storm-generated sedimentary units: tempestite proximality and event stratification in the Middle Devonian Hamilton Group of New York, p. 129157. In Brett, C. E. (ed.), Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) of New York State, Pt. I. New York State Museum Bulletin, 457.Google Scholar
Chapman, F. 1903. New or little known fossils in the National Museum, Melbourne, Pt. 1, Some Palaeozoic species. Proceedings of the Royal Society of Victoria, new series 15:104122.Google Scholar
Cowen, R. 1981. Crinoid arms and banana plantations: an economic harvesting analogy. Paleobiology, 7:332343.CrossRefGoogle Scholar
Ehlers, G. M., and Kesling, R. V. 1970. Devonian strata of Alpena and Presque Isle Counties, Michigan. Guidebook for the field trip of the North-Central Section of the Geological Society of America East Lansing Meeting, 130 p.Google Scholar
Ehlers, G. M., Stumm, E. C., and Kesling, R. V. 1951. Devonian rocks of southeastern Michigan and northwestern Ohio. Guidebook for the stratigraphic field trip of the Geological Society of America Detroit Meeting, 40 p.Google Scholar
Goldring, W. 1923. The Devonian crinoids of the state of New York. New York State Museum Memoir, 16, 670 p.Google Scholar
Goldring, W. 1926. New species of Hamilton crinoids. New York State Museum Bulletin, 267:8992.Google Scholar
Goldring, W. 1950. Devonian crinoids: new and old. Wagner Free Institute of Science Bulletin, 25:2937.Google Scholar
Goldring, W. 1954. Devonian crinoids, new and old, II. New York State Museum Circular, 37:351.Google Scholar
Grasso, T. X. 1986. Redefinition. Stratigraphy and Depositional Environments of the Mottville Member (Hamilton Group) in Central and Eastern New York, p. 531. In Brett, C. E. (ed.), Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) of New York State, Pt. I. New York State Museum Bulletin, 457.Google Scholar
Haarmann, E. 1921. Die Botryocriniden und Lophocriniden des rheinischen Devons. Jahrbuch der Preussischen Geologischen Landesanstalt (neue folge), 41:187.Google Scholar
Haude, R., and Thomas, E. 1989. Ein Oberdevon-/Unterkarbon-profil im Velberter Sattel (Nördliches Rheinisches Schiefergebirge) mit neue arten von (?) Sostronocrinus (Echinodermata). Bulletin de la Société beige de géologie, 98:373383.Google Scholar
House, M. R. 1996. Juvenile goniatite survival strategies following Devonian extinction events, p. 163185. In Hart, M. B., (ed.), Biotic Recovery from Mass Extinction Events. Geological Society Special Publication, 102.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläeontologische Zeitschrift, 3(1):128 p.Google Scholar
Jell, P. A. 1999. Silurian and Devonian crinoids from central Victoria. Memoirs of the Queensland Museum, 43:1114.Google Scholar
Jell, P. A., and Jell, J. S. 1999. Crinoids, a blastoid and a cyclocystoid from the Upper Devonian reef complex of the Canning Basin, Western Australia. Memoirs of the Queensland Museum, 43:201236.Google Scholar
Jell, P. A., and Theron, J. N. 1999. Early Devonian echinoderms from South Africa. Memoirs of the Queensland Museum, 43:115199.Google Scholar
Kammer, T. W. 1985. Aerosol filtration theory applies to Mississippian deltaic crinoids. Journal of Paleontology, 59:551560.Google Scholar
Kammer, T. W. and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology, 13:379395.CrossRefGoogle Scholar
Kesling, R. V. 1969. Two new crinoids from the Middle Devonian Silica Formation. Contributions from the Museum of Paleontology, University of Michigan, 22:199206.Google Scholar
Kesling, R. V. 1973. New Botryocrinus and Glossocrinus from the Middle Devonian Bell Shale of Michigan. Contributions from the Museum of Paleontology, University of Michigan, 24:3146.Google Scholar
Kier, P. M. 1952. Echinoderms of the Middle Devonian Silica Formation of Ohio. Contributions from the Museum of Paleontology, University of Michigan, 10:5981.Google Scholar
Lane, N. G., and Breimer, A. 1974. Arm types and feeding habits of Paleozoic crinoids. Koninklijke Nederlandse van Wetenschappen, Processen Series B, 77:3239.Google Scholar
Lane, N. G., Waters, J. A., and Maples, C. G. 1997. Echinoderm faunas of the Hongguleleng Formation, Late Devonian (Famennian), Xinjiang-Uygur Autonomous Region, People's Republic of China. Paleontological Society Memoir 47, 43 p.Google Scholar
Laudon, L. R., Parks, J. M., and Spreng, A. C. 1952. Mississippian crinoid fauna from the Banff Formation, Sunwapta Pass, Alberta. Journal of Paleontology, 26:544575.Google Scholar
Le Menn, J. 1985. Les Crinoïdes du Dévonien Inférieur et Moyen du Massif Armoricain. Mémoires de la Société géologique et minéralogique de Bretagne, 30, 268 p.Google Scholar
McIntosh, G. C. 1979. Abnormal specimens of the Middle Devonian crinoid Bactrocrinites and their effect on the taxonomy of the genus. Journal of Paleontology, 53:1828.Google Scholar
McIntosh, G. C. 1982. Feeding strategies in lower Paleozoic cladid inadunate crinoids. Geological Society of America Abstracts with Programs, 14:40.Google Scholar
McIntosh, G. C. 1983a. Nuxocrinus and Pyrenocrinus, two new Devonian cladid inadunate crinoid genera. Journal of Paleontology, 57:495513.Google Scholar
McIntosh, G. C. 1983b. Crinoid and blastoid biogeography in the Middle Devonian (Givetian) of eastern North America. Geological Society of America Abstracts with Programs, 15:171.Google Scholar
McIntosh, G. C. 1984. Devonian cladid inadunate crinoids: Family Botryocrinidae Bather, 1899. Journal of Paleontology, 58:12601281.Google Scholar
McIntosh, G. C. 1986. Phylogeny of the dicyclic inadunate crinoid order Cladida. Fourth North American Paleontological Convention, p. A31.Google Scholar
McIntosh, G. C. and Brett, C. E. 1988. Occurrence of the Cladid Inadunate Crinoid Thalamocrinus in the Silurian (Wenlockian) of New York and Ontario. Royal Ontario Museum, Life Sciences Contributions, 149:117.Google Scholar
McNamara, K. J. 1990. The evolutionary process and the fossil record: Heterochrony, p. 111119. In Briggs, D. E. G. and Crowther, P. (eds.), Palaeobiology: A synthesis. Blackwell Scientific Publications, London and New York.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea, or lily-shaped animals; with observations on the genera Asteria, Euryale, Comatula, and Marsupites . Bryan and Co., Bristol, England, 150 p.Google Scholar
Moore, R. C., and Jeffords, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. University of Kansas Paleontological Contributions, Echinodermata, Article 9, 86 p.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 153 p.Google Scholar
Moore, R. C., Lane, N. G., and Strimple, H. L. 1978. Crinoidea (Order Cladida), p. T578T759. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T(2), Echinodermata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Orchard, M. J. 1979. On a varcus Zone conodont fauna from the Ilfracombe Slates (Devonian, North Devon). Geological Magazine, 116:129134.CrossRefGoogle Scholar
Rozhnov, S. V., and Arendt, Y. A. 1984. Novyy rod krinoidey iz verkhnego devona glavnogo devonskogo polya. Paleontologicheskiaei Zhurhurnal, 4:118121.Google Scholar
Sandberger, G., and Sandberger, F. 1855. Die Versteinerungen des rheinischen Schichtensystems in Nassau. Kreidel and Niedner, Wiesbaden, 564 p.Google Scholar
Schmidt, W. E. 1906. Der oberste Lenneschiefer zwische Letmathe und Iserlohn. Zeitschrift der Deutschen Geologischen Gesellschaft, 57:498566.Google Scholar
Schmidt, W. E. 1934. Die Crinoideen des rheinischen Devons, Teil I, Die Crinoideen des Hunsrückschiefers. Abhandlungen der Preussischen Geologischen Landesanstalt (neue folge), 163:1149.Google Scholar
Schmidt, W. E. 1941. Die Crinoideen des rheinischen Devons, Teil II, A. Nachtrag zu: Die Crinoideen des Hunsrückschiefers. B. Die Crinoideen des Unterdevons bis zur Cultrijugatus-Zone (mit Ausschluss des Hunsrückschiefers). Abhandlungen der Reichsstelle für Bodenforschung (neue folge), 182:1253.Google Scholar
Seilacher, A. 1990. Taphonomy: Overview, Taphonomy of Fossil-Lagerstätten, p. 266270. In Briggs, D. E. G. and Crowther, P. (eds.), Palaeobiology: A synthesis. Blackwell Scientific Publications, London and New York.Google Scholar
Sigler, J. P., White, D., and Kesling, R. V. 1971. Logocrinus brandoni, a new inadunate crinoid from the Middle Devonian Silica Shale of Ohio. Contributions from the Museum of Paleontology, University of Michigan, 23:213220.Google Scholar
Strimple, H. L., and Levorson, C. O. 1969. Two Upper Devonian crinoids, p. 1720. In Strimple, H. L., Levorson, C. O., McGinnis, M. R., Moore, R. C., and Priest, A., Fossil crinoid studies. University of Kansas Paleontological Contributions, Paper 42.Google Scholar
Strimple, H. L., and Levorson, C. O. 1974. Additional crinoid specimens from the Shellrock Formation (Upper Devonian) of Iowa. Proceedings of the Iowa Academy of Science, 80:182184.Google Scholar
Strimple, H. L., and McGinnis, M. R. 1969. New crinoid from the Gilmore City Formation, Lower Mississippian of Iowa, p. 2122. In Strimple, H. L., Levorson, C. O., McGinnis, M. R., Moore, R. C., and Priest, A. (eds.), Fossil crinoid studies. University of Kansas Paleontological Contributions, Paper 42.Google Scholar
Stukalina, G. A. 1986. Laws of historical development of crinoidea in the early and middle Paleozoic of the USSR [Zakonomernosti istoricheskogo razvitiya krinoidei v rannem i srednem paleozoe SSSR]. Akademiia Nauk SSSR, Paleontologicheskii Institut, Moskva, 142 p.Google Scholar
Stukalina, G. A. 1988. Studies in Paleozoic crinoid-columnals and-stems. Palaeontolgraphica Abteiling A, 204:166.Google Scholar
Van Sant, J. F., and Lane, N. G. 1964. Crawfordsville (Indiana) crinoid studies. University of Kansas Paleontological Contributions, Echinodermata, Article 7, 136 p.Google Scholar
Webby, B. D. 1961. A Middle Devonian Inadunate crinoid from West Somerset, England. Palaeontology, 4:538541.Google Scholar
Webby, B. D. 1965. Quantoxocrinus, a new Devonian inadunate crinoid from West Somerset, England. Palaeontology, 8:1115.Google Scholar
Webster, G. D., Hafley, D. J., Blake, D. B., and Glass, A. 1999. Crinoids and stelleroids (Echinodermata) from the Broken Rib Member, Dyer Formation (Late Devonian, Famennian) of the White River Plateau, Colorado. Journal of Paleontology, 73:461486.CrossRefGoogle Scholar
Whidborne, G. F. 1898. A monograph of the Devonian fauna of the south of England, Volume 3, the fauna of the Marwood and Pilton beds. Palaeontological Society of London, 236 p.Google Scholar
Williams, H. S. 1882. New crinoids from the rocks of the Chemung period, (Upper Devonian,) of New York State. Proceedings of the Philadelphia Academy of Natural Sciences, 34:1734.Google Scholar