Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T12:47:37.946Z Has data issue: false hasContentIssue false

Deep-Water Ediacaran Fossils from Northwestern Canada: Taphonomy, Ecology, and Evolution

Published online by Cambridge University Press:  15 October 2015

Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada, Research Associate, School of Geosciences, Monash University, Melbourne, Victoria, 3800 Australia
Marc Laflamme
Affiliation:
Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, ON, L5L 1C6, Canada
Peter W. Trusler
Affiliation:
Research Associate, School of Geosciences, Monash University, Melbourne, Victoria, 3800 Australia
Robert W. Dalrymple
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada,
Carolyn Greentree
Affiliation:
Research Associate, School of Geosciences, Monash University, Melbourne, Victoria, 3800 Australia

Abstract

Impressions of soft-bodied Ediacaran megafossils are common in deep-water slope deposits of the June beds at Sekwi Brook in the Mackenzie Mountains of NW Canada. Two taphonomic assemblages can be recognized. Soles of turbidite beds contain numerous impressions of simple (Aspidella) and tentaculate (Hiemalora, Eoporpita) discs. A specimen of the frond Primocandelabrum is attached to an Aspidella-like holdfast, but most holdfast discs lack any impressions of the leafy fronds to which they were attached, reflecting Fermeuse-style preservation of the basal level of the community. Epifaunal fronds (Beothukis, Charnia, Charniodiscus) and benthic recliners (Fractofusus) were most commonly preserved intrastratally on horizontal parting surfaces within turbidite and contourite beds, reflecting a deep-water example of Nama-style preservation of higher levels in the community. A well-preserved specimen of Namalia significantly extends the known age and environmental range of erniettomorphs into deep-water aphotic settings. Infaunal bilaterian burrows are absent from the June beds despite favorable beds for their preservation. The June beds assemblage is broadly similar in age and environment to deep-water Avalonian assemblages in Newfoundland and England, and like them contains mainly rangeomorph and arboreomorph fossils and apparently lacks dickinsoniomorphs and other clades typical of younger and shallower Ediacaran assemblages. Fossil data presently available imply that the classically deep- and shallow-water taxa of the Ediacara biota had different evolutionary origins and histories, with sessile rangeomorphs and arboreomorphs appearing in deep-water settings approximately 580 million years ago and spreading into shallow-water settings by 555 Ma but dickinsoniomorphs and other iconic clades restricted to shallow-water settings from their first known appearance at 555 Ma until their disappearance prior to the end of the Ediacaran.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1989. Uppermost Proterozoic formations in central Mackenzie Mountains, Northwest Territories. Energy, Mines & Resources Canada, Geological Survey of Canada, Bulletin 368, Ottawa, 26 p.Google Scholar
Anderson, M. M. and Misra, S. B. 1968. Fossils found in the Precambrian Conception Group in southeastern Newfoundland. Nature, 220:680681.Google Scholar
Antcliffe, J. B. and Brasier, M. D. 2008. Charnia at 50: developmental models for Ediacaran fronds. Palaeontology, 51:1126.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), p. 8, 9. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin, Number 463.Google Scholar
Bouma, A. H. 1962. Sedimentology of some flysch deposits. Elsevier, Amsterdam, 168 p.Google Scholar
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Brasier, M. D. and Antcliffe, J. 2004. Decoding the Ediacaran enigma. Science, 305:11151117.Google Scholar
Brasier, M. D. and Antcliffe, J. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society, London, 166:363384.Google Scholar
Brasier, M. D., Antcliffe, J., and Liu, A. G. 2012. The architecture of Ediacaran fronds. Palaeontology, 55:11051124.Google Scholar
Carbone, C. and Narbonne, G. M. 2014. When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada. Journal of Paleontology, 88:309330.CrossRefGoogle Scholar
Carney, J. N. 1999. Revisiting the Charnian Supergroup: new advances in understanding old rocks. Geology Today, 15:221229.Google Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.Google Scholar
Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C., and Anderson, M. M. 2004. Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point Biota, Newfoundland. Journal of Paleontology, 78:10311036.Google Scholar
Conway Morris, S. 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36:593635.Google Scholar
Dalrymple, R. W. and Narbonne, G. M. 1996. Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, NWT. Canadian Journal of Earth Sciences, 33:848862.Google Scholar
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., and Briggs, D. E. G. 2012. Experimental formation of a microbial death mask. Palaios, 27:293303.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. 2005. Ediacaran trace fossils: true and false, p. 125138. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development: Proceedings of a Symposium honoring Adolf Seilacher for his Contributions to Paleontology, in Celebration of his 80th Birthday. New Haven, Peabody Museum of Natural History, Yale University.Google Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea . Journal of Morphology, 252:315334.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:10911097.Google Scholar
Farmer, J., Vidal, G., Moczydlowska, M., Strauss, H., Ahlberg, P., and Seidlecka, A. 1992. Ediacaran fossils from the Innerelv Member (late Proterozoic) of Tanafjorden area, northeastern Finnmark. Geological Magazine, 129:181195.Google Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 31:211217.Google Scholar
Gabrielse, H., Blusson, S. L., and Roddick, J. A. 1973. Geology of Flat River, Glacier Lake, and Wrigley Lake map-areas, District of Mackenzie and Yukon Territory. Geological Survey of Canada Memoir, 366, 153 p.Google Scholar
Gaucher, C., Poiré, D. G., Bossi, J., Sánchez Bettucci, L., and Beri, A. 2013. Comment on “Bilaterian burrows and grazing behavior at >585 million years ago.” Science, 339:906b.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.Google Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point Assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.Google Scholar
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces association with the Ediacara biota in South Australia. Earth Science Reviews, 96:196206 CrossRefGoogle Scholar
Gehling, J. G. and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara biota tell time? Geology, 41:447450.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.CrossRefGoogle Scholar
Gehling, J. G., Droser, M. L., Jensen, S., and Runnegar, B. N. 2005. Ediacaran organisms: relating form to function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development, Proceedings of a symposium honouring Adolf Seilacher for his contributions to palaeontology in celebration of his 80th birthday. Peabody Museum of Natural History, Yale University.Google Scholar
Germs, G. J. B. 1968. Discovery of a new fossil in the Nama system, South West Africa. Nature, 219:5354.CrossRefGoogle Scholar
Gibson, G. G., Teeter, S. A, and Fedonkin, M. A. 1984. Ediacarian fossils from the Carolina slate belt, Stanly County, North Carolina. Geology 12:387390.Google Scholar
Glaessner, M. F. and Daily, B. 1959. The geology and late Precambrian fauna of the Ediacara fossil reserve. Records of the South Australian Museum, 13:369407.Google Scholar
Glaessner, M. F. and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.Google Scholar
Grazhdankin, D. V. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30:203221.Google Scholar
Grazhdankin, D. V. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology, 45:5778.Google Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36:803806.Google Scholar
Hagadorn, J. W. and Bottjer, D. J. 1997. Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology, 25:10471050.Google Scholar
Hoffman, P. F. and Halverson, G. P. 2011. Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera. In Arnaud, E., Halverson, G. P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs 36:397412.CrossRefGoogle Scholar
Hofmann, H. J. 1981. First record of a late Proterozoic faunal assemblage in the North American Cordillera. Lethaia, 14:303310.Google Scholar
Hofmann, H. J. and Mountjoy, E. W. 2010. Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Saleint Mountain, British Columbia, Canada. Canadian Journal of Earth Sciences, 47:13051325.CrossRefGoogle Scholar
Hofmann, H. J., O'brien, S. J., and King, A. F. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology, 82:136.Google Scholar
Horodyski, R. J. 1991. Late Proterozoic megafossils from southern Nevada. Geological Society of America, Abstracts with Programs, 26 (5):163.Google Scholar
Ichaso, A., Dalrymple, R. W., and Narbonne, G. M. 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences, 44:2541.Google Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology, 11:336355.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa, Vol. 10, Topics in Geobiology. Plenum Press, New York.Google Scholar
Jenkins, R. J. F. and Gehling, J. G. 1978. A review of the frond-like fossils of the Ediacara assemblage. Records of the South Australian Museum, 17:347359.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.Google Scholar
Laflamme, M. and Narbonne, G. M. 2008 a. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179.Google Scholar
Laflamme, M. and Narbonne, G. M. 2008 b, Competition in a Precambrian world: Palaeoecology and functional biology of Ediacaran fronds. Geology Today, 24:182187.Google Scholar
Laflamme, M. Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.Google Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of the Ediacaran frond Charnia from the Avalon Peninsula of Newfoundland. In Vickers-Rich, P. and Komarower, P. (eds.) The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286:237257.Google Scholar
Laflamme, M., Xiao, S., and Kowalewski, M. 2009. Osmotrophy in modular Ediacaran organisms. Proceedings of the National Academy of Sciences of USA, 106:1443814443.Google Scholar
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., and Briggs, D. E. G. 2011. Microbial biofilms and the preservation of the Ediacara biota. Lethaia 45:203213.Google Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire cat? Gondwana Research, 23:558573.Google Scholar
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.Google Scholar
Liu, A. G., McIlroy, D., Matthews, J. L., and Brasier, M. D. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society, London, 169:395403.Google Scholar
Llave, E., Schönfeld, J., Hernández-Molina, F. J., Mulder, T., Somoza, L., díaz del Río, V., and Sánchez-Almazo, I. 2006. High-resolution stratigraphy of the Mediterranean outflow contourite system in the Gulf of Cadiz during the late Pleistocene: the impact of Heinrich events. Marine Geology, 227:241262.Google Scholar
Macdonald, F. A, Schmitz, M. D., Crowley, J. A., Roots, C. F. Jones, D. S., Maloof, A. C., Strauss, J. V., Cohen, P. A., Johnson, D. T., and Schrag, D. P. 2010. Calibrating the Cryogenian. Science, 327:12411243.Google Scholar
Macdonald, F. A., Strauss, J. V., Sperling, E. A., Halverson, G. P., Narbonne, G. M., Johnston, D. T., Petach, T., Schrag, D. T., and Higgins, J. A. 2013. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology, 362:250272.CrossRefGoogle Scholar
MacNaughton, R. B., Narbonne, G. M., and Dalrymple, R. W. 2000. Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: implications for passive-margin development and Ediacaran faunal ecology. Canadian Journal of Earth Sciences, 37:9971020.CrossRefGoogle Scholar
Martín-Chivelet, J., Fregenal-Martínez, M. A., and Chacón, B. 2008. Traction structures in contourites. p. 159182. In Rebesco, M. and Camerlenghi, A., (eds.), Contourites. Developments in Sedimentology, Vol. 60. New York, Elsevier.Google Scholar
Mason, S. J., Narbonne, G. M., Dalrymple, R. W., and O'brien, S. J. 2013. Paleoenvironmental analysis of Ediacaran strata in the Catalina Dome, Bonavista Peninsula, Newfoundland. Canadian Journal of Earth Sciences, 50:197212.Google Scholar
Meyer, M., Elliot, D. A., Schiffbauer, J. D., Hall, M., Hoffmann, K. H., Schneider, G., Vickers-Rich, P., and Xiao, S. 2014. Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. Journal of Paleontology, 88:240252.Google Scholar
Misra, S. B. 1969. Late Precambrian (?) fossils from southeastern Newfoundland. Geological Society of America Bulletin, 80:21332140.Google Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of the late Precambrian coelenterate-bearing rock, southeastern Newfoundland. Geological Society of America Bulletin, 82:979987.Google Scholar
Narbonne, G. M. 1994. New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 68:411416.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.Google Scholar
Narbonne, G. M. 2005. The Ediacaran biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.Google Scholar
Narbonne, G. M. 2007. The Canadian Cordillera, p. 175183. In Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. (eds.), The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press.Google Scholar
Narbonne, G. M. 2011. When life got big. Nature, 470:339340.CrossRefGoogle ScholarPubMed
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook and Mackenzie Mountains, Yukon, Canada. Palaeontology, 33:945980.Google Scholar
Narbonne, G. M. and Aitken, J. D. 1995. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Research, 73:101121.Google Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology, 31:2730.Google Scholar
Narbonne, G. M. and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.Google Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology, 7:953969.Google Scholar
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503523.Google Scholar
Narbonne, G. M., Xiao, S., and Shields, G. 2012. The Ediacaran Period, p. 427449. In Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G. (eds.), Geologic Timescale 2012. Elsevier.Google Scholar
Pecoits, E., Konhauser, K. O., Aubet, N. R., Heaman, L. M., Veroslavsky, G., Stern, R. A., and Gingras, M. K. 2012. Bilaterian burrows and grazing behavior at >585 million years ago. Science, 336:16931696.Google Scholar
Pecoits, E., Konhauser, K. O., Aubet, N. R., Heaman, L. M., Veroslavsky, G., Stern, R. A., and Gingras, M. K. 2013. Response to comment on “Bilaterian burrows and grazing behavior at >585 million years ago.” Science, 339:906c.Google Scholar
Pflug, H. D. 1966. Neue Fossilreste aus den Nama-Schichten in Südwest-Afrika. Paläontologische Zeitschrift, 40:1425.Google Scholar
Pflug, H. D. 1972, Systematik der jung-präkambrischen Petalonamae: Paläontologische Zeitschrift, 46:5667.CrossRefGoogle Scholar
Ross, G., Mcmechan, M. E., and Hein, F. J. 1989. Proterozoic history: the birth of the miogeocline p. 79–104. In Ricketts, B. D. (ed.), Western Canada Sedimentary Basin—a case history. Canadian Society of Petroleum Geologists, Calgary.Google Scholar
Runnegar, B. N. 1992. Proterozoic fossils of soft-bodied metazoans (Ediacara faunas), p. 9991007. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, 1348 p.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London, 149:607613.Google Scholar
Seilacher, A., Buatois, L. A., and Mángano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.Google Scholar
Shanmugam, G. 2008. Deep-water bottom currents and their deposits, p. 5981. In Rebesco, M., and Camerlenghi, A. (eds.), Contourites. Developments in Sedimentology, Vol. 60. New York, Elsevier.Google Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M. 2008. The Avalon Explosion: evolution of Ediacara morphospace. Science, 319:8184.Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian paleobiology, p. 355368. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286.Google Scholar
Sperling, E. A., Peterson, K. J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology, 9:2433.Google Scholar
Sprigg, R. C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 71, 212224.Google Scholar
Stow, D. A. V. and Faugères, J.-C. 2008, Contourite facies and the facies model, p. 223256. In Rebesco, M. and Camerlenghi, A. (eds.), Contourites. Developments in Sedimentology, Vol. 60. New York, Elsevier.Google Scholar
Stow, D. A. V., Faugères, J.-C. Viana, A., and Gonthier, E. 1998. Fossil contourites: a critical review. Sedimentary Geology, 115:331.Google Scholar
Stow, D. A. V., Faugères, J.-C., Howe, J. A., Pudsey, C. J., and Viana, A. R. 2002. Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art. Geological Society, London, Memoirs 22:720.Google Scholar
Stow, D. A. V., Hunter, S., Wilkinson, D., and Hernández-molina, F. J. 2008. The nature of contourite deposition, p. 143156. In Rebesco, M. and Camerlenghi, A. (eds.), Contourites. Developments in Sedimentology, Vol. 60. New York, Elsevier.Google Scholar
Tarhan, L. D., Droser, M. L., and Gehling, J. G. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios, 25:823830.Google Scholar
Vickers-Rich, P., Yu, A. Ivantsov, P. Trusler, W., Narbonne, G. M., Hall, M., Wilson, S. A., Greentree, C., Fedonkin, M. A., Elliott, D. A., Hoffmann, K. H., and Schneider, G. I. C. 2013. Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia. Journal of Paleontology 85:115.Google Scholar
Waggoner, B. M. 1999. Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology, 25:440458.Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.Google Scholar
Wilby, P. R., Carney, J. N, and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean. Geology, 39:655658.Google Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Palaeoenviromental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:13751391.Google Scholar
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.Google Scholar