Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T05:22:02.182Z Has data issue: false hasContentIssue false

Decapod Crustaceans from the Eocene Castle Hayne Formation, North Carolina: Paleoceanographic Implications

Published online by Cambridge University Press:  11 August 2017

Rodney M. Feldmann
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242
Karen L. Bice
Affiliation:
Earth System Science Center, Pennsylvania State University, University Park 16802-2711
Carrie Schweitzer Hopkins
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242
Eric W. Salva
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242
Katherine Pickford
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington 47405

Abstract

Ten species of brachyuran decapod crustaceans, including four new species, Matutites miltonorum, Pororaria? granulosa, Eocarpilius blowi, and Glyphithyreus sturgeoni, are described from the Eocene Castle Hayne Formation in North Carolina. In addition, claw fragments suggest the presence of an additional four species. Analysis of the fauna within the formation, coupled with data from the enclosing rocks, suggests an environment of deposition in subtropical, clear water at shallow shelf depths. Wave and current energy were variable. Although no corpses were recognized and all the taxa were represented either by claw fragments or isolated carapaces, little abrasion or breakage was observed, which suggests that the material was deposited near the living site of the organisms. Many of the decapod taxa are congeneric with contemporaneous forms from Italy and with Miocene species in Hungary. Paleoceanographic modeling, using the Parallel Ocean Climate Model (POCM), forced by the GENESIS atmospheric circulation model, produces conditions of temperature, salinity, and ocean circulation that corroborate conclusions drawn from analysis of the Castle Hayne sediments and fauna and, additionally, yields similar conditions for the northern margin of the Tethyan region in the Mediterranean basin. Ocean circulation patterns demonstrate the feasibility of dispersal of subtropical organisms from the Mediterranean part of the Tethys across the Atlantic Ocean to the North American coastline.

Type
Research Article
Copyright
Copyright © 1998, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balss, H. 1929. Decapoden des Roten Meeres. IV. Oxyrhyncha und Schlussbetrachtungen. (Expeditions S. M. Schiff “Pola” in das Rote Meer. Zoologische Ergebnisse 36). Denkschriften K. Akademie der Wissenschaften, Wien. Mathematisch-naturwissenschaftliche Klasse, 102:1.30.Google Scholar
Barron, E. J. 1987. Eocene equator-to-pole surface open temperatures: A significant climate problem? Paleoceanography, 2:729739.Google Scholar
Barron, E. J., and Peterson, W. H. 1991. The Cenozoic ocean circulation based on ocean General Circulation Model results. Palaeogeography, Palaeoclimatology, Palaeoecology, 83:128.CrossRefGoogle Scholar
Baum, G. R. 1980. Petrography and depositional environments of the Middle Eocene Castle Hayne Limestone. Southeastern Geology, 21:175196.Google Scholar
Bell, T. 1857. A monograph of the fossil malacostracousCrustacea of Great Britain. Pt. I, Crustacea of the London Clay. Palaeontographical Society, London, 44 p.Google Scholar
Berggren, W. A. and Hollister, D. 1974. Paleogeography, paleobiogeography, and the history of circulation in the Atlantic Ocean, p. 126186 In, Hay, W. W. (ed.), Studies in Paleo-oceanography. Society of Economic Paleontologists and Mineralogists, Special Publication Number 20.Google Scholar
Beschin, C., Busulini, A., De Angeli, A., and Tessier, G. 1994. I Crostacei Eocenici della Cava “Boschetto” de Nogarole Vicentino. Società Veneziana di Scienze Naturali, Lavori, 19:159215.Google Scholar
Bice, K. L. 1997. An investigation of early Eocene deep water warmth using uncoupled atmosphere and ocean general circulation models: Model sensitivity to geography, initial temperatures, atmospheric forcing and continental runoff. Unpublished Ph.D. Dissertation, Pennsylvania State University, University Park, 363 p.Google Scholar
Bice, K. L., Barron, E. J., and Peterson, W. H. In press. Reconstruction of realistic early Eocene paleobathymetry and ocean GCM sensitivity to specified basin configuration. In Crowley, T. J., and Burke, K (eds.), Tectonic Boundary Conditions for Climate Reconstructions. Oxford University Press, Oxford.Google Scholar
Bishop, G. A., and Whitmore, J. L. 1986. The Paleogene crabs of North America: Occurrence, preservation, and distribution. SEPM Guidebooks, Southeastern United States, Third Annual Midyear Meeting, p. 297306.Google Scholar
Bittner, A. 1875. Die Brachyuren des Vicentinischen Tertiärgebirges. Deskschrafft k. Akademie Wissenschaft Wien, Abteilung 2, 34:63106.Google Scholar
Blatt, H. G., Middleton, G., and Murray, R. 1980. Origin of Sedimentary Rocks. Prentice-Hall, Inc., New Jersey. 766 p.Google Scholar
Blow, W. C., and Manning, R. B. 1996. Preliminary descriptions of 25 new decapod crustaceans from the middle Eocene of the Carolinas. U.S.A. Tulane Studies in Geology and Paleontology, 29:126.Google Scholar
Blueford, J. R. 1989. Radiolarian evidence: Late Cretaceous through Eocene ocean circulation patterns, p. 1929. In Hein, J. R. and Obradovic, J., (eds.), Siliceous Deposits of the Tethys and Pacific Regions. Springer Verlag, New York.Google Scholar
Brookfield, M.E. 1988. A mid-Ordovician temperate carbonate shelf-the Black River and Trenton Limestone Groups of southern Ontario, Canada, p. 137154. In Nelson, C.S. (ed.), Non-Tropical Shelf Carbonates-Modern and Ancient. Sedimentary Geology, special issue, 60, 363 p. Google Scholar
Bryan, K. 1969. A numerical model for the study of the world ocean. Journal of Computational Physics, 4:347376.Google Scholar
Cande, S. C., La Brecque, J. L., Larson, R. L., Pitman, W. C. III, Golovchenko, X., and Haxby, W. F. 1989. Magnetic Lineations of the world's ocean basins. Lamont-Doherty Geological Observatory Contribution Number 4367: American Association of Petroleum Geologists, Tulsa, Oklahoma, 1 sheet.Google Scholar
Canu, F., and Bassler, R. S. 1920. North American early Tertiary Bryozoa. U. S. National Museum Bulletin, 879 p.CrossRefGoogle Scholar
Cerling, T. 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. American Journal of Science, 291:377400.Google Scholar
Chave, K.E. 1967. Recent carbonate sediments—an unconventional view. Journal of Geological Education, 35:394396.Google Scholar
Cheetham, A. H. 1963. Late Eocene zoogeography of the eastern Gulf Coast region. Geological Society of America Memoir, 91, 113 p.Google Scholar
Cooke, C. W. 1959. Cenozoic echinoids of eastern United States. U. S. Geological Survey Professional Paper, 321, 106 p.Google Scholar
Cooper, G. A. 1959. Genera of Tertiary and Recent rhynchonelloid brachiopods. Smithsonian Miscellaneous Collection, 139(5):190.Google Scholar
Copeland, C. W. 1964. Eocene and Miocene foraminifera from two localities in Duplin County, North Carolina. Bulletin of American Paleontology, 47:209324.Google Scholar
Covey, C., and Thompson, S. T. 1989. Testing the effects of ocean heat transport on climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 75:331341.Google Scholar
Cox, M. D. 1970. A mathematical model of the Indian Ocean. Deep Sea Research, 17:4775.Google Scholar
Cox, M. D. 1975. A baroclinic numerical model of the world ocean: preliminary results. Numerical Models of Ocean Circulation, Washington, D. C., p. 107118.Google Scholar
Cox, M. D. 1984. A primitive equation three-dimensional model of the ocean. Technical Report 1, NOAA Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, N. J., 250 p.Google Scholar
Curran, H. A. 1986. Trace fossils from the Rocky Point Member of the Peedee Formation (Upper Cretaceous) and the Castle Hayne Limestone (Eocene), p. 285288. In Textoris, D. A. (ed), SEPM Third Annual Midyear Meeting. Raleigh North Carolina. Society of Economic Paleontologists and Mineralogists.Google Scholar
Dana, J. D. 1851. On the classification of the Cancroidea. Silliman's American Journal of Science and Arts, Series 2, 12:121131.Google Scholar
Davidson, T. 1877. A monograph of Recent brachiopods. Linnean Society Zoological Transcript, 2:156162.Google Scholar
Dercourt, J., et al. 1986. Geologic evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias, p. 241315. In Le Pinchon, X., and Monin, A. S. (eds.), Evolution of the Tethys, Tectonopyhysics, 123.Google Scholar
Dockal, J. A. 1986. Cements and related diagenetic features of the Castle Hayne Limestone, East Coast Limestone Quarry, Pender County, North Carolina, p. 277284. In Textoris, D. A. (ed.), SEPM Third Annual Midyear Meeting. Raleigh North Carolina. Society of Economic Paleontologists and Mineralogists.Google Scholar
Durham, J. W. 1966. Ecology and paleoecology, p. T257T265. In Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Fabiani, R. 1910. I crostacei terziari del Vicentino. Bollettino Museo Civico Vicenza, 1:140.Google Scholar
Fabricius, J. C. 1798. Supplementum entomologiae systematicaetical …. C. G. Proft, Hafniae, 572 p.CrossRefGoogle Scholar
Feldmann, R. M. 1993. Additions to the fossil decapod crustacean fauna of New Zealand. New Zealand Journal of Geology and Geophysics, 36:201211.Google Scholar
Feldmann, R. M., Casadío, S., Chirino Gálvez, L., and Aguirre-Urreta, M. 1995. Fossil decapod crustaceans from the Jaguel and Roca Formations (Maastrichtian—Danian) of the Neuquén Basin, Argentina. The Paleontological Society Memoir 43, 22 p.Google Scholar
Feldmann, R. M., and Maxwell, P. A. 1990. Late Eocene decapod Crustacea from north Westland, South Island, New Zealand. Journal of Paleontology, 64:779797.Google Scholar
Feldmann, R. M., Vega, F., Tucker, A. B., Garcia-Barrera, P., and Avendaño, J. 1996. The oldest record of Lophoranina (Decapoda: Raninidae) from the Late Cretaceous of Chiapas, southeastern Mexico. Journal of Paleontology, 70:296303.Google Scholar
Galil, B. S., and Clark, P. F. 1994. A revision of the genus Matuta Weber, 1795 (Crustacea: Brachyura: Calappidae). Zoologische Verhandelingen, 294:155.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R399R651. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Glaessner, M. F. 1980. New Cretaceous and Tertiary crabs (Crustacea: Brachyura) from Australia and New Zealand. Transactions of the Royal Society of South Australia, 104:171192.Google Scholar
Griffin, D. J. G. and Tranter, H. A. 1986. The Decapoda Brachyura of the Siboga Expedition, Part VIII. Majidae. E. J. Brill, Leiden, 335 p.Google Scholar
Guinot, D. 1977. Propositions pour une nouvelle classification des Crustacés Décapodes Brachyoures. Compte Rendu Académie des Science de Paris, serie D, 285:10491052.Google Scholar
De Haan, W. 1833–1849. Crustacea, p. 109164. In von Siebold, P. F., Fauna Japonica sive Descriptio animalium, quae in itinere per Japoniam, jufsu et aufpiciis superiorum, qui summum in India Batava Imperium tenent, fuscepto, annis 1823–1830 collegit, notia, obfervationibus et adumbrationibus illuftravit. 4, 17, 31. J. Muller, Leiden.Google Scholar
Haq, B. U. 1984. Paleoceanography: A synoptic overview of 200 million years of ocean history, p. 201231. In Haq, B. U. and Milliman, J. D. (eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold, New York.Google Scholar
Harris, W. B., Zullo, V A., and Otte, L. J. 1986. Road log and description of field trip stops. SEPM Field Guidebooks, Southeastern United States, Third Annual Midyear Meeting, p. 311332.Google Scholar
Hazel, J. E., Bybell, L. M., Edwards, L. E., Jones, G. D., and Ward, L. W. 1984. Age of the Comfort Member of the Castle Hayne Formation, North Carolina. Geological Society of America Bulletin, 95:10401044.2.0.CO;2>CrossRefGoogle Scholar
Heckel, P. H. 1972. Recognition of ancient shallow marine environments. In Hamblin, J. K., Hamblin, W.K. (eds.), Recognition of ancient sedimentary environments. Society of Economic Paleontologists and Mineralogists Special Paper p. 226286.Google Scholar
Jones, G. D. 1983. Foraminiferal biostratigraphy and depositional history of the middle Eocene rocks of the coastal plain of North Carolina. Special Publication North Carolina Geological Survey Section 8, 80 p.Google Scholar
Kellum, L. B. 1926. Paleontology and stratigraphy of the Castle Hayne and Trent marls in North Carolina. U. S. Geological Survey Professional Paper 143, 56 p.Google Scholar
Kier, P. M. 1980. The echinoids of the middle Eocene Warley Hill Formation, Santee Limestone, and the Castle Hayne Limestone of North and South Carolina. Smithsonian Contribution to Paleobiology, 39, 102 p.Google Scholar
Lagaaij, R. and Gautier, Y. V. 1965. Bryozoan assemblages from marine sediments of the Rhone delta, France. Micropaleontology, 11:3958.Google Scholar
Latreille, P. A. 1802–1803. Histoire naturelle, général et particulière, des crustacés et des insectes: Volume 3. F. Dufart, Paris, 468 p.Google Scholar
Lewis, J. E. and Ross, A. 1965. Notes on the Eocene Brachyura of Florida. Quarterly Journal of the Florida Academy of Sciences, 28:233244.Google Scholar
Lorenthey, I., and Beurlen, K. 1929. Die fossilen Decapoden der Länder der Ungarischen Krone. Geological Hungarica, Series Palaeontologica Fasciculus 3, 420 p.Google Scholar
Macleay, W. S. 1838. Illustrations of the Annulosa of South Africa. On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith, p. 5371. In Smith, A. (ed.), Illustrations of the Zoology of South Africa, Invertebrate, Smith, Elder, and Company, London.Google Scholar
Manning, R. B., and Holthuis, L. B. 1981. West African brachyuran crabs (Crustacea: Decapoda). Smithsonian Contributions to Zoology, 306, 379 p.Google Scholar
Mc Cann, M. P., Semtner, A. J., and Chervin, R. M. 1994. Transports and budgets of volume, heat, and salt from a global eddy-resolving ocean model. Climate Dynamics, 10:5980.Google Scholar
Mc Lay, C. L., Feldmann, R. M., and Mac Kinnon, D. I. 1995. New species of Miocene spider crabs from New Zealand, and a partial cladistic analysis of the genus Leptomithrax Miers, 1876 (Brachyura: Majidae). New Zealand Journal of Geology and Geophysics, 38:299313.Google Scholar
Mc Rae, S. G. 1972. Glauconite. Earth-Science Reviews. 8:397440.Google Scholar
Milliman, J. D. 1974. Marine carbonates. Springer-Verlag, New York. 375 p.Google Scholar
Milliman, J. D., Weiler, Y., and Stanley, D. J. 1973. Morphology and carbonate sedimentation on shallow banks in the Alboran Sea, p. 241259. In Stanley, D. J. (ed.), The Mediterranean Sea: a natural sedimentation laboratory. Dowden, Hutchison, and Ross, Pennsylvania.Google Scholar
Milne Edwards, A. 1862–1865. Monographic des crustacés de la famille cancériens. Annals des Sciences Naturelles, Zoologie, series 4, 18 (1862):3185, pls. 1–10; 20(1863):273–324, pls. 5–12; series 5, 1(1864):31–88, pls. 3–9; 3(1865):297–351, pls 5–13.Google Scholar
Milne Edwards, A. 1873. Descriptions des quelques crustacés nouveaux ou peu connus provenant du Musée de M. C. Godeffroy. Journal des Museum Godeffroy, 1:7788. 12–13.Google Scholar
Monod, T. 1956. Hippidea et Brachyura ouest-africains. Mémoires de l'Institut Français d'Afrique Noire, 45, 674 p.Google Scholar
Müller, P. 1976. Decapods (Crustacea) fauna a Budapesti Miocénböol (4). Földtani Közlöny, Bulletin of the Hungarian Geological Society, 106:149160.Google Scholar
Müller, P. 1984. Decapod Crustacea of the Badenian. Institutum Geologicum Hungaricum, Geologica Hungarica, Series Palaeontologica, Fasciculus 42, 317 p.Google Scholar
Müller, P. 1993. Neogene decapod crustaceans from Catalonia. Scripta Musei Geologici Seminarii Barcinonensis, 225:139.Google Scholar
Natali, P. M. 1985. Paleoecologic interpretation of the Castle Hayne limestone in North Carolina utilizing bryozoan zoarial forms. , Kent State University, Kent, Ohio. 151 p.Google Scholar
Nelson, C.S. 1978. Temperate shelf carbonate sediments in the Cenozoic of New Zealand. Sedimentology, 25:737771.Google Scholar
Nelson, C.S., Keane, S.L. and Head, P.S. 1988. Non-tropical carbonate deposits on the modern New Zealand shelf, p. 7194. In Nelson, C.S. (ed.), Non-Tropical Shelf Carbonates-Modern and Ancient. Sedimentary Geology, Special Issue, 60, 363 p. Google Scholar
Ortmann, A. E. 1893. Die Decapoden-Krebse des Strassburger Museums. 7. Theil. Abtheilung: Brachyura (Brachyura genuina Boas) 2. Unterabtheilung: Cancroidea, 2. Section: Cancrinea, 1. Gruppe: Cyclometopa. Zoologischen Jahrbücher, Abtheilung fur Systematik, Geographie und Biologie der Thiere, 7:411495.Google Scholar
Otte, L. J. 1981. Petrology of the exposed Eocene Castle Hayne Limestone of North Carolina. Unpublished Ph.D. Dissertation, University of North Carolina, Chapel Hill, 183 p.Google Scholar
Otte, L. J. 1986. Regional Perspective on the Castle Hayne limestone, p. 270276. In Textoris, D. A. (ed), SEPM Third Annual Midyear Meeting. Raleigh North Carolina. Society of Economic Paleontologists and Mineralogists.Google Scholar
Pajaud, D. 1974. Ecologie des Thecides. Lethaia, 7:203218.Google Scholar
Parsons, B., and Sclater, J. G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82:803827.Google Scholar
Piper, J. D. A. 1987. Palaeomagnetism and the Continental Crust. Open University Press, New York, 434 p.Google Scholar
Pomel, A. 1847. Note critique dur les caractères et les limites du genre Palaeotherium . Archives des Sciences Physique et Naturelle, Genève, 5:200207.Google Scholar
Rafinesque, C. S. 1815. Analyse de la Nature, ou Tableau de l'Univers et des corps Organisés. Palermo, 224 p.Google Scholar
Rathbun, M. J. 1930. The cancroid crabs of America of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae and Xanthidae. Smithsonian Institution, United States National Museum Bulletin, 152, 609 p.Google Scholar
Rathbun, M. J. 1935. Fossil Crustacea of the Atlantic and Gulf coastal plain. Geological society of America, Special papers, 2:1160.Google Scholar
Reuss, A. E. 1859. Zur Kenntnis fossiler Krabben. Akademie der Wissenschaften zu Wien, Denkschrift, 17:190.Google Scholar
Rigby, J. K. 1981. The sponge fauna of the Eocene Castle Hayne Limestone from east-central North Carolina. Tulane Studies in Geology and Paleontology, 16:123144.Google Scholar
Riggs, S. R. 1979. Phosphorite sedimentation of Florida—a model phosphogenic system. Economic Geology, 74:285314.Google Scholar
Ronov, A. B., Khain, V., and Balukhovsky, A. 1989. Atlas of Lithological-Paleogeographical Maps of the World, Mesozoic and Cenozoic of Continents and Oceans. USSR Academy of Sciences, Leningrad, 79 p.Google Scholar
Sakai, T. 1976. Crabs of Japan and Adjacent Seas. Kodansha Ltd., Tokyo, Japan. 773 p.Google Scholar
Salva, E. W., Schweitzer-Hopkins, C. E., and Feldmann, R. M. 1995. Paleoceanography of decapod-rich rocks of the Castle Hayne Formation (Eocene) of North Carolina. Geological Society of America Abstracts with Program, 27(6):A-368.Google Scholar
Samouelle, G. 1819. The Entomologist's Useful Compendium, or an Introduction to the Knowledge of British Insects, etc. T. Boys, London, 496 p.Google Scholar
Schopf, T. J. M. 1969. Paleoecology of Ectoprocta (bryozoans). Journal of Paleontology, 43:234344.Google Scholar
Scotese, C. R., and Golonka, J. 1992. PALEOMAP Paleogeographic Atlas, PALEOMAP Progress Report No. 20, Department of Geology, University of Texas at Arlington, 43 p.Google Scholar
Semtner, A. J. 1974. An oceanic general circulation model with bottom topography. Technical Report 9, Department of meterology, University of California, Los Angeles, 99 p.Google Scholar
Semtner, A. J., and Chervin, R. M. 1992. General circulation from a global eddy-resolving model. Journal of Geophysical Research, 97(C4):54935550.Google Scholar
Serene, R. and Umali, A. F. 1972. The family Raninidae and other new and rare species of brachyuran decapods from the Philippines and adjacent regions. The Philippine Journal of Science, 99:21105.Google Scholar
Sinha, A., and Stott, L. D. 1994. New atmospheric ρCO2 estimates from paleosols during the late Paleocene/early Eocene global warming interval. Global and Planetary Change, 9:297307.Google Scholar
Sloan, L. C. 1994. Equable climates during the early Eocene: Significance of regional paleogeography for North American climate. Geology, 22:881884.Google Scholar
Sloan, L. C., and Rea, D. K. 1995. Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology, 119:275292.Google Scholar
Stach, L. W. 1936. Correlation of zoarial form with habitat. Journal of Geology, 44:6065.Google Scholar
Stephenson, W., and Campbell, B. 1960. The Australian portunids (Crustacea: Portunidae). IV. Remaining genera. Australian Journal of Marine and Freshwater Research, 11:73122.Google Scholar
Taylor, W.R. 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. Ann Arbor, University of Michigan Press, 870 p.Google Scholar
Thompson, S. L., and Pollard, D. 1995. A global climate model (GENESIS) with a land-surface transfer scheme (LSX), Part I: Present climate simulation. Journal of Climate, 8:732761.Google Scholar
Via Boada, L. 1965. Ranínidos fósiles de España. Contribución de la familia Raninidae (Crustáceos decápodos). Boletiín Insitituto Geológico y Minero de España, 76:233275.Google Scholar
Via Boada, L. 1969. Decápodos del Eoceno Español. Pirineos, Re vista del Instituto de estudios pirenaicos, Jaca, 91–94:1469.Google Scholar
Vogt, P. R., and Tucholke, B. E. 1986. Paleogeography: Late Cretaceous to Holocene, Plate 10. In Vogt, P. R., and Tucholke, B. E. (eds.), The Western North Atlantic Region. Geological Society of America, Boulder, Colorado.Google Scholar
Ward, L. W., Lawrence, D. R., and Blackwelder, B. W. 1978. Stratigraphic revision of the Middle Eocene, Oligocene, and lower Miocene–Atlantic Coastal Plain of North Carolina. Geological Survey Bulletin 1457-F, 23 p.Google Scholar
Washington, W. M., Meehl, G. A., Ver Plank, L., and Bettge, T. W. 1994. A world ocean model for greenhouse sensitivity studies: Resolution intercomparison and the role of diagnostic forcing. Climate Dynamics, 9:321344.Google Scholar
Wass, R. E., Connely, J. R., and Macintyre, R. J. 1970. Bryozoan carbonate sand continuous along southern Australia. Marine Geology, 9:6373.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328F444. In Moore, R. C. (ed.), Treaties on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, 498 p. Google Scholar
Wells, J. W. 1967. Corals as bathometers. Marine Geology, 5:349365.Google Scholar
Williams, A. B. 1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, 550 p.Google Scholar
Zullo, V. A., and Baum, G. R. 1979. Paleogene barnacles from the coastal plain of North Carolina (Cirrepedia, Thoracicia). Southeastern Geology, 20:229246.Google Scholar