Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T17:16:16.608Z Has data issue: false hasContentIssue false

Crinoid plate circlet homologies

Published online by Cambridge University Press:  20 May 2016

William I. Ausich*
Affiliation:
Department of Geological Sciences, The Ohio State University, Columbus 43210

Abstract

A model for crinoid plate circlet homologies is proposed based on a tricyclic (four-circlet) aboral cup, with Aethocrinus the characteristic tricyclic crinoid. The plate circlets in the aboral cup of Aethocrinus, from bottom to top, are lintels (named herein), infrabasals, basals, and radials. In this model, traditional interpretation is maintained for the aboral cup plates of most crinoids. Cladids, flexibles, articulates (primitively), and diplobathrid camerates are dicyclic and are composed of infrabasal, basal, and radial circlets. Monobathrid camerates are monocyclic, and they have basal and radial circlets. Disparid plate circlet homologies are reinterpreted. Among disparids, “basals” are lintels, “inferradials” and “radials” are infrabasals, and “superradials” are radials.

The “Law of Wachsmuth and Springer” is judged to be a relationship that has most fidelity applied to lumen angles. This “law” is considered to be only a consequence of development and not an invariable basis by which to determine plate homologies. In the model presented here, plates cannot be shifted around after the juvenile calyx is sutured, and arms may grow on either radials or infrabasals, whichever plates are at the top of the cup when arms begin to grow.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1986. Early Silurian rhodocrinitacean crinoids (Brass-field Formation, Ohio). Journal of Paleontology, 60:84106.Google Scholar
Ausich, W. I. 1996. Origin of the class Crinoidea. International Echinoderm Conference Program and Abstracts, p. 24.Google Scholar
Bather, F. A. 1900. The Echinodermata. The Pelmatozoa, p. 38204. In Lankester, R. (ed.), A Treatise on Zoology. Adam and Charles Black, London.Google Scholar
Breimer, A. 1978. General morphology Recent crinoids, p. T11T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Broadhead, T. W. 1984. Orders of camerate crinoids and blastoids: grades or clades? Geological Society of America Abstracts with Programs, 16:455.Google Scholar
Brower, J. C. 1975. Silurian crinoids from the Pentland Hills, Scotland. Palaeontology, 18:631656.Google Scholar
Donovan, S. K. 1984. Stem morphology of the Recent crinoid Chladocrinus (Neocrinus) decorus. Palaeontology, 27:825841.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, Part I. Palaeontographical Society Monograph, 568:168.Google Scholar
Donovan, S. K. 1988. The early evolution of the Crinoidea, p. 236244. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Haugh, B. N. 1979. Late Ordovician channel-dwelling crinoid from southern Ontario, Canada. American Museum Novitates, 2655:125.Google Scholar
Jobson, L., and Paul, C. R. C. 1979. Compagicrinus fenestratus, a new Lower Ordovician inadunate crinoid from North Greenland. Rapport Grønlands Geologiske Undersøgelse, 91:7181.Google Scholar
Kelly, S. M. 1982. Origin of the crinoid orders Disparida and Cladida: possible inadunate cup plate homologies. Third North American Paleontological Convention, Proceedings, 1:285290.Google Scholar
Kelly, S. M. 1986. Classification and evolution of Class Crinoidea. Fourth North American Paleontological Convention, University of Colorado, Boulder, p. A23.Google Scholar
Kelly, S. M., Frest, T. J., and Strimple, H. L. 1978. Additional information on Simplococrinus persculptus. Journal of Paleontology, 52:12271232.Google Scholar
Kolata, D. R. 1982. Camerates, p. 170205. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions Monograph 1.Google Scholar
Koenig, J. W. 1965. Ontogeny of two Devonian crinoids. Journal of Paleontology, 39:398413.Google Scholar
Lahaye, M.-C., and Jangoux, M. 1987. The skeleton of the stalked stages of the comatulid crinoid Antedon bifida (Echinodermata). Zoomorphology, 107:5865.Google Scholar
Lane, N. G. 1978a. Inadunates, p. T263T266. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Lane, N. G. 1978b. Evolution of flexible crinoids, p. T301T302. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1982a. Microcrinoids from the Middle Pennsylvanian of Indiana. Journal of Paleontology, 56:103115.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1982b. Growth and systematic revision of Kallimorphocrinus astrus, a Pennsylvanian microcrinoid. Journal of Paleontology, 56:224259.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1985. Redescription of Allagecrinus americanus Rowley, 1895, a Late Devonian microcrinoid. Journal of Paleontology, 59:438445.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1986. Micromorph crinoid fauna of the McCraney Limestone (Mississippian, Kinderhookian) of western Illinois. Journal of Paleontology, 60:736743.Google Scholar
Lane, N. G., and Sevastopulo, G. D. and Strimple, H. L. 1985. Amphipsalidocrinus: a monocyclic camerate microcrinoid. Journal of Paleontology, 59:7984.Google Scholar
McIntosh, G. C. 1986. Phylogeny of the dicyclic inadunate order Cladida. Fourth North American Paleontological Convention, University of Colorado, Boulder, A31.Google Scholar
Moore, R. C. 1952. Crinoids, p. 604652. In Moore, R. C., Lalicker, C. G., and Fischer, A. G. (eds.), Invertebrate Fossils. McGraw-Hill, New York.Google Scholar
Moore, R. C. 1954. Status of Invertebrate Paleontology, 1953. IV. Echinodermata: Pelmatozoa. Bulletin of the Museum of Comparative Zoology, 112:125149.Google Scholar
Moore, R. C. 1962. Ray structures of some inadunate crinoids. University of Kansas Paleontological Contributions, Echinodermata, Article 5, 47 p.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and Classification of Paleozoic Crinoids. Geological Society of America Special Paper 46, 167 p.Google Scholar
Moore, R. C., and Teichert, C. (eds.). 1978. Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, 1,027 p.Google Scholar
Philip, G. M. 1964. Australian fossil crinoids. I, Introduction and terminology for the anal plates of crinoids. Proceedings of the Linnaean Society of New South Wales, 88:259272.Google Scholar
Philip, G. M. 1965. Plate homologies in inadunate crinoids. Journal of Paleontology, 39:146161.Google Scholar
Philip, G. M., and Strimple, H. L. 1971. An interpretation of the crinoid Aethocrinus moorei Ubaghs. Journal of Paleontology, 45:491493.Google Scholar
Rozhnov, S. V. 1988. Morfologiya i sistematichskoe polozhenie nizhneordovikskikh morskikh lilii. Paleontologicheskii Zhurnal, 2:6779.Google Scholar
Rozhnov, S. V. 1989. The morphology and systematic position of Lower Ordovician sea lilies. Paleontology Journal, 2:6275. [English translation of Rozhnov, 1988].Google Scholar
Sevastopulo, G. D., and Lane, N. G. 1981. Silurian microcrinoids from western Tennessee. Journal of Paleontology, 55:11711175.Google Scholar
Sevastopulo, G. D., and Lane, N. G. 1988. Ontogeny and phylogeny of disparid crinoids, p. 245253. Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Simms, M. J. 1993. Re-interpretations of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia, 20:303312.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Strimple, H. L. 1978. Evolutionary trends among poteriocrinina, p. T298T301. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancien crinoide dicyclique connu. The University of Kansas Paleontological Contributions Paper, 38, 25 p.Google Scholar
Ubaghs, G. 1972. More about Aethocrinus moorei Ubaghs, the oldest known dicyclic crinoid. Journal of Paleontology, 46:773775.Google Scholar
Ubaghs, G. 1978a. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1978b. Evolution of camerate crinoids, p. T281T292. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wachsmuth, C., and Springer, F. 1885. Revision of the Palaeocrinidae, Pt. 3, Sec. 1. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Academy of Natural Sciences, Philadelphia, Proceedings:223364(1-162).Google Scholar
achsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Harvard College Museum of Comparative Zoology, Memoir 20, 21, 897 p.Google Scholar
Warn, J. R., and Strimple, H. L. 1977. The disparid inadunate superfamilies Homocrinacea and Cincinnaticrinacea (Echinodermata: Crinoidea), Ordovician-Silurian, North America. Bulletins of American Paleontology, 72(296), 138 p.Google Scholar